DOI QR코드

DOI QR Code

Robust back-stepping sliding mode control for LCL-type grid-connected inverters in weak grids

  • Xin Ding (School of Electrical Engineering, Guangxi University) ;
  • Junyang Liang (School of Electrical Engineering, Guangxi University) ;
  • Shangping Lu (Department of Automation Engineering, Guangxi Vocational College of Water Resources and Electric Power) ;
  • Fannie Kong (School of Electrical Engineering, Guangxi University) ;
  • Yanming Chen (School of Electrical Engineering, Guangxi University)
  • Received : 2022.03.20
  • Accepted : 2022.12.07
  • Published : 2023.05.20

Abstract

Gird impedance variations in a weak grid can easily lead to the instability of grid-connected inverters with an LCL filter. In this paper, a robust back-stepping sliding mode control strategy for the LCL-type grid-connected inverter is proposed to ensure local asymptotic stability. First, due to its nonlinear switching problem, the model is transformed into the Brunovsky canonical form of a linear system, using the exact feedback linearization theory. Then, to ensure global stability and rapid dynamic performance, a back-stepping sliding mode control strategy is recursively derived. Furthermore, under the premise of asymptotic stability, a robust scheme is developed to obtain appropriate parameters against grid impedance variations. Hence, the expected stability performance can be achieved and the dynamic performance can be improved in a weak grid. Finally, a 2 kW prototype is constructed, and experimental results demonstrate the effectiveness of the proposed controller when compared with the conventional back-stepping scheme.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51567004), the Natural Science Foundation of Guangxi Province (2021GXNSFAA220136), and the Highlevel Innovation Team and Distinguished Scholar Program of Guangxi Higher Education Institutions under Grant Guangxi teach talent (2020) No. 6.

References

  1. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398-1409 (2006) https://doi.org/10.1109/TIE.2006.881997
  2. Liserre, M., Teodorescu, R., Blaabjerg, F.: Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21(1), 263-272 (2006) https://doi.org/10.1109/TPEL.2005.861185
  3. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation. IEEE Trans. Ind. Electron. 62(3), 1537-1547 (2015)
  4. Guan, Y., Wang, Y., Xie, Y., Liang, Y., Lin, A., Wang, X.: The dual-current control strategy of grid-connected inverter with LCL filter. IEEE Trans. Power Electron. 34(6), 5940-5952 (2019) https://doi.org/10.1109/TPEL.2018.2869625
  5. Errouissi, R., Al-Durra, A.: Design of PI controller together with active damping for grid-tied LCL-filter systems using disturbanceobserver-based control approach. IEEE Trans. Ind. Appl. 54(4), 3820-3831 (2018) https://doi.org/10.1109/TIA.2018.2823258
  6. Dannehl, J., Wessels, C., Fuchs, F.W.: Limitations of voltageoriented pi current control of grid-connected PWM rectifiers with LCL filters. IEEE Trans. Ind. Electron. 56(2), 380-388 (2009) https://doi.org/10.1109/TIE.2008.2008774
  7. Kim, D., Lee, D.: Feedback linearization control of three-phase UPS inverter systems. IEEE Trans. Ind. Electron. 57(3), 963-968 (2010) https://doi.org/10.1109/TIE.2009.2038404
  8. Bao, X., Zhuo, F., Tian, Y., Tan, P.: Simplifed feedback linearization control of three-phase photovoltaic inverter with an LCL filter. IEEE Trans. Power Electron. 28(6), 2739-2752 (2013) https://doi.org/10.1109/TPEL.2012.2225076
  9. Busada, C.A., Gomez Jorge, S., Solsona, J.A.: Full-state feedback equivalent controller for active damping in LCL-filtered grid-connected inverters using a reduced number of sensors. IEEE Trans. Ind. Electron. 62(10), 5993-6002 (2015) https://doi.org/10.1109/TIE.2015.2424391
  10. Arab, N., Vahedi, H., Al-Haddad, K.: LQR control of single-phase grid-tied puc5 inverter with LCL flter. IEEE Trans. Ind. Electron. 67(1), 297-307 (2020) https://doi.org/10.1109/TIE.2019.2897544
  11. Isidori, A., Krener, A., Gori-Giorgi, C., Monaco, S.: Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Autom. Control 26(2), 331-345 (1981) https://doi.org/10.1109/TAC.1981.1102604
  12. Fu, X., Li, S.: Control of single-phase grid-connected converters with LCL flters using recurrent neural network and conventional control methods. IEEE Trans. Power Electron. 31(7), 5354-5364 (2016)
  13. Wai, R., Chen, M., Liu, Y.: Design of adaptive control and fuzzy neural network control for single-stage boost inverter. IEEE Trans. Ind. Electron. 62(9), 5434-5445 (2015) https://doi.org/10.1109/TIE.2015.2408571
  14. Bosch, S., Staiger, J., Steinhart, H.: Predictive current control for an active power filter with LCL-filter. IEEE Trans. Ind. Electron. 65(6), 4943-4952 (2018) https://doi.org/10.1109/TIE.2017.2772176
  15. Guzman, R., de Vicuna, L.G., Castilla, M., Miret, J., de la Hoz, J.: Variable structure control for three-phase LCL-fltered inverters using a reduced converter model. IEEE Trans. Ind. Electron. 65(1), 5-15 (2018) https://doi.org/10.1109/TIE.2017.2716881
  16. Vieira, R.P., Martins, L.T., Massing, J.R., Stefanello, M.: Sliding mode controller in a multiloop framework for a grid-connected VSI with LCL filter. IEEE Trans. Ind. Electron. 65(6), 4714-4723 (2018) https://doi.org/10.1109/TIE.2017.2772143
  17. Zheng, L., Jiang, F., Song, J., Gao, Y., Tian, M.: A discrete-time repetitive sliding mode control for voltage source inverters. IEEE J. Emerg. Sel. Top. Power Electron. 6(3), 1553-1566 (2018) https://doi.org/10.1109/JESTPE.2017.2781701
  18. Dehkordi, N.M., Sadati, N., Hamzeh, M.: A robust backstepping high-order sliding mode control strategy for grid-connected DG units with harmonic/interharmonic current compensation capability. IEEE Trans. Sustain. Energy 8(2), 561-572 (2017) https://doi.org/10.1109/TSTE.2016.2611383
  19. Hao, X., Yang, X., Liu, T., Huang, L., Chen, W.: A sliding-mode controller with multiresonant sliding surface for single-phase gridconnected VSI with an LCL filter. IEEE Trans. Power Electron. 28(5), 2259-2268 (2013) https://doi.org/10.1109/TPEL.2012.2218133
  20. Komurcugil, H., Altin, N., Ozdemir, S., Sefa, I.: An extended Lyapunov-function-based control strategy for single-phase UPS inverters. IEEE Trans. Power Electron. 30(7), 3976-3983 (2015) https://doi.org/10.1109/TPEL.2014.2347396
  21. Wu, J., Lu, Y.: Adaptive backstepping sliding mode control for boost converter with constant power load. IEEE Access 7, 50797-50807 (2019) https://doi.org/10.1109/ACCESS.2019.2910936
  22. Wang, Y., Wai, R.: Design of discrete-time backstepping slidingmode control for LCL-type grid-connected inverter. IEEE Access 8, 95082-95098 (2020) https://doi.org/10.1109/ACCESS.2020.2995469
  23. Zhu, Y., Fei, J.: Disturbance observer based fuzzy sliding mode control of PV grid connected inverter. IEEE Access 6, 21202-21211 (2018) https://doi.org/10.1109/ACCESS.2018.2825678
  24. Xu, Y., et al.: Sliding mode observer for sensorless control of surface permanent magnet synchronous motor equipped with LC filter. IET Power Electron. 12(4), 686-692 (2019) https://doi.org/10.1049/iet-pel.2018.5218
  25. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2-22 (1993) https://doi.org/10.1109/41.184817
  26. Yang, S., Lei, Q., Peng, F.Z., Qian, Z.: A robust control scheme for grid-connected voltage-source inverters. IEEE Trans. Ind. Electron. 58(1), 202-212 (2011)  https://doi.org/10.1109/TIE.2010.2045998