DOI QR코드

DOI QR Code

Improved SVPWM modulation method for three-phase dual-input dual-buck inverters

  • Yongshuai Wang (College of Automation, Nanjing University of Aeronautics and Astronautics) ;
  • Hongjuan Ge (College of Civil Aviation, Nanjing University of Aeronautics and Astronautics) ;
  • Hang Yin (College of Automation, Nanjing University of Aeronautics and Astronautics) ;
  • Bingjie Wu (College of Automation, Nanjing University of Aeronautics and Astronautics) ;
  • Fan Yang (College of Automation, Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2022.04.05
  • 심사 : 2022.10.17
  • 발행 : 2023.05.20

초록

The traditional modulation method for three-phase dual-input dual-buck inverters is level-shifted sine pulse width modulation. The disadvantage of this method is that the dc voltage utilization ratio is low and the software fault tolerance is difficult to realize. To solve these problems, an improved SVPWM suitable for this inverter is proposed in this paper. By analyzing the switch modes and bridge arm midpoint level of this inverter, 27 voltage vectors are obtained. According to the obtained long vector cluster, medium vector cluster, and short vector cluster, six modulation sectors are obtained, and each modulation sector has four modulation regions. When the voltage of the inverter low-voltage dc source changes, the associated vector changes as well. How the modulation region changes when the associated vector changes is analyzed. The action time of each vector in each modulation region is deduced. In addition, the action order of each vector involved in vector synthesis is optimized. A 2 kW prototype was built to carry out experimental research. Experimental results show that this modulation method improves the dc voltage utilization ratio, reduces the loss, and improves the efficiency of the inverter.

키워드

과제정보

This paper is funded by the following fund: the National Science Foundation of China (NSFC) under Grant U1933115.

참고문헌

  1. Gu, C.Y., Yan, H., Yang, J.J.: A multiport power conversion system for the more electric aircraft. IEEE Trans. Transp. Electrif. 6(4), 1707-1720
  2. Nawawi, A., Tong, C.F., Yin, S.: Design and demonstration of high power density inverter for aircraft applications. IEEE Trans. Ind. Appl. 53(2), 1168-1176 (2017) https://doi.org/10.1109/TIA.2016.2623282
  3. Modeer, T., Pallo, N., Foulkes, T.: Design of a GaN-based interleaved nine-level flying capacitor multilevel inverter for electric aircraft applications. IEEE Trans. Power Electron. 35(11), 12153-12165
  4. Areerak, K.-N., Bozhko, S.V., Asher, G.M.: Stability study for a hybrid AC-DC more-electric aircraft power system. IEEE Trans. Aerosp. Electron. Syst. 48(1), 329-347 (2012) https://doi.org/10.1109/TAES.2012.6129639
  5. Zaman, H., Zheng, X.C., Yang, M.X.: A SiC MOSFET based high efficiency interleaved boost converter for more electric aircraft. J. Power Electron. 18(1), 23-33 (2018)
  6. Peng, X., Yu, L., Gong, K.Y.: Voltage balance evaluation strategy for DC-port faults in centralized aircraft ground power unit based on three-level neutral point clamped cascaded converter. J. Power Electron. 21(8), 1109-1122 (2021) https://doi.org/10.1007/s43236-021-00255-3
  7. Sun, P.W., Liu, C., Lai, J.S.: Three-phase dual-buck inverter with unified pulsewidth modulation. IEEE Trans. Power Electron. 27(3), 1159-1167 (2012) https://doi.org/10.1109/TPEL.2011.2164269
  8. Zheng, X.X., Zhang, L., Liu, X.T.: Half-cycle control method of the bidirectional three-phase dual-buck inverter without zerocrossing distortion. IEEE J. Emerg. Sel. Top. Power Electron. 9(2), 2088-2097 (2021) https://doi.org/10.1109/JESTPE.2020.2971550
  9. Yang, F., Ge, H.J., Yang, J.F.: A Family of dual-buck inverters with an extended low-voltage dc-input port for efficiency improvement based on dual-input pulsating voltage-source cells. IEEE Trans. Power Electron. 33(4), 3115-3128 (2018) https://doi.org/10.1109/TPEL.2017.2706762
  10. Yang, F., Ge, H.J., Dang, R.Y.: A dual-DC-input multi-level dualbuck inverter. Trans. China Electrotech. Soc. 33(6), 1320-1327 (2018)
  11. Li, S., Ge, H.J., Yin, H.: Three-phase aeronautical static inverter based on dual-input bi-direction pulsating voltage source cells. Trans. China Electrotech. Soc. 36(16), 3493-3503 (2021)
  12. Sun, H.X., Jing, K., Dong, Y.: Research of SVPWM algorithm based on 120° coordinates system. Trans. China Electrotech. Soc. 31(5), 52-59 (2016)
  13. Zhu, L.S., Fang, X.C., Lin, F.: A synchronized SVPWM strategy based on calculating switching angles. Proc. CSEE 38(13), 3930-3938 (2018)
  14. Qi, X., Wang, C., Zhou, X.M.: Low hardware resource consumption fast SVPWM algorithm. Electr. Mach. Control 18(4), 31-38 (2014)
  15. Wang, S.L., Ma, J.P., Liu, B.: Unifed SVPWM algorithm and optimization for single-phase three-level NPC converters. IEEE Trans. Power Electron. 35(7), 7702-7712
  16. Qin, W., Qiu, Y. N., Sun, C.: Modified SVPWM scheme for faulttolerant control of AC-DC PWM converter. IEEE J. Emerg. Sel. Top. Power Electron. 9(4), 4715-4725 (2021) https://doi.org/10.1109/JESTPE.2020.3016338
  17. Yan, Q.Z., Zhou, Z.R., Wu, M.B.: A simplified analytical algorithm in abc coordinate for the three-level SVPWM. IEEE Trans. Power Electron. 36(4), 3622-2627 (2021)
  18. Zhang, J., Wai, R.J.: Design of new SVPWM mechanism for three-level NPC ZSI via line-voltage coordinate system. IEEE Trans. Power Electron. 35(8), 8593-8606 (2020)  https://doi.org/10.1109/TPEL.2019.2961127