DOI QR코드

DOI QR Code

Three-phase four-level inverter with capacitor voltage self-balancing and high DC-voltage conversion ratio

  • Bihua Hu (School of Automation and Electronic Information, Xiangtan University) ;
  • Fa Wang (School of Automation and Electronic Information, Xiangtan University) ;
  • Jiang Zhu (School of Automation and Electronic Information, Xiangtan University) ;
  • Wenlang Deng (School of Automation and Electronic Information, Xiangtan University) ;
  • Zhaohong Wang (School of Automation and Electronic Information, Xiangtan University) ;
  • Siyan Liu (New Energy Institute, Hunan Vocational Institute of Technology)
  • Received : 2022.06.29
  • Accepted : 2022.11.28
  • Published : 2023.05.20

Abstract

Multilevel inverters are widely employed in industry application due to their low voltage-variation rate and little current distortion. However, capacitor-voltage regulation adds the complexity of their modulation, and the low DC-voltage conversion ratio restricts their application in some specific occasions. Here, a new three-phase four-level inverter with switched-capacitor circuits and full-bridge circuits is proposed to address the above issues. In addition, a corresponding space-vector diagram is proposed to control the power switches of the inverter. In this space-vector diagram, each subsector includes only a switching sequence, which is simpler than the conventional one. Then, simulation and experimental platforms are established to demonstrate the validity of the proposed inverter. The obtained results show that the proposed inverter can meet the expected design requirements.

Keywords

Acknowledgement

This work was supported in part by the Hunan Natural Science Foundation under Grant 2021JJ30670, 2021JJ30668 and 2021JJ60052, and in part by Scientifc Research Foundation of Hunan Provincial Education Department under Grant 21C0066, and in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022GK2050.

References

  1. Alsofyani, I.M., Lee, K.B.: Three-level inverter-fed model predictive torque control of a permanent magnet synchronous motor with discrete space vector modulation and simplified neutral point voltage balancing. J. Power Electron. 22, 22-30 (2022) https://doi.org/10.1007/s43236-021-00330-9
  2. Le, D.D., Lee, D.C., Kim, H.G.: Three-phase flying-capacitor MMC with six coupled inductors. J. Power Electron 20, 916-925 (2020) https://doi.org/10.1007/s43236-020-00099-3
  3. Gu, M., Wang, Z., Yu, K., et al.: Interleaved model predictive control for three-level neutral-point-clamped dual three-phase PMSM drives with low switching frequencies. IEEE Trans. Power. Electron. 36, 11618-11630 (2021) https://doi.org/10.1109/TPEL.2021.3068562
  4. Guo, F., Yang, T., Li, C., et al.: Active modulation strategy for capacitor voltage balancing of three-level neutral-point-clamped converters in high-speed drives. IEEE Trans. Industr. Electron. 69, 2276-2287 (2022) https://doi.org/10.1109/TIE.2021.3065605
  5. Xu, Y., Zhang, Z., Wang, G., et al.: Modular multilevel converter with embedded energy storage for bidirectional fault isolation. IEEE Trans. Power Deliver. 37, 105-115 (2022) https://doi.org/10.1109/TPWRD.2021.3054022
  6. Wang, Y., Wang, Z., Liu, W., et al.: Step-up switched-capacitor multilevel inverter employing multiple inputs with reduced switches. J. Power Electron. 21, 986-997 (2021) https://doi.org/10.1007/s43236-021-00245-5
  7. Qanbari, T., Tousi, B.: Single-source three-phase multilevel inverter assembled by three-phase two-level inverter and two single-phase cascaded H-bridge inverters. IEEE Trans. Power Electron. 36, 5204-5212 (2021) https://doi.org/10.1109/TPEL.2020.3029870
  8. Siddique, M.D., Mekhilef, S., Shah, N.M., et al.: New switched-capacitor-based boost inverter topology with reduced switch count. J. Power Electron. 20, 926-937 (2020) https://doi.org/10.1007/s43236-020-00102-x
  9. Khan, A.A., Khan, U.A., Ahmed, H.F., et al.: Improved NPC inverters without short-circuit and dead-time issues. IEEE Trans. Power Electron. 37, 2180-2190 (2022)
  10. Song, M.G., Kim, S.M., Lee, K.B.: Independent switching technique to remove abnormal output voltage in hybrid active NPC inverters. J. Power Electron. 21, 85-93 (2021) https://doi.org/10.1007/s43236-020-00170-z
  11. Hu, B., Kang, L., Liu, J., et al.: Model predictive direct power control with fixed switching frequency and computational amount reduction, IEEE. J. Emerg. Sel. Topics Power Electron. 7, 956-966 (2019) https://doi.org/10.1109/JESTPE.2019.2894007
  12. Schweizer, M., Kolar, J.W.: Design and implementation of a highly efficient three-level T-type converter for low-voltage applications. IEEE Trans. Power Electron. 28, 899-907 (2013) https://doi.org/10.1109/TPEL.2012.2203151
  13. Wang, L., Zhang, L., Xiong, Y., et al.: Low-frequency suppression strategy based on predictive control model for modular multilevel converters. J. Power Electron. 21, 1407-1415 (2021) https://doi.org/10.1007/s43236-021-00286-w
  14. Chen, M., Yang, Y., Loh, P.C., et al.: A cascaded half-bridge three-level inverter with an inductive DC-link for flexible voltage boosting. IEEE Trans. Industr. Electron. 69, 4901-4913 (2022) https://doi.org/10.1109/TIE.2021.3084159
  15. Arshadi, S.A., Poorali, B., Adib, E., et al.: High step-up DC-AC inverter suitable for AC module applications. IEEE Trans. Industr. Electron. 63, 832-839 (2016) https://doi.org/10.1109/TIE.2015.2480387
  16. Janabi, A., Wang, B.: Switched-capacitor voltage boost converter for electric and hybrid electric vehicle drives, IEEE Trans. Power. Electron. 35, 5615-5624 (2020) https://doi.org/10.1109/TPEL.2019.2949574
  17. Li, Y., Yang, X., Chen, W., et al.: Neutral-point voltage analysis and suppression for NPC three-level photovoltaic converter in LVRT operation under imbalanced grid faults with selective hybrid SVPWM strategy. IEEE Trans. Power Electron. 34, 1334-1355 (2019) https://doi.org/10.1109/TPEL.2018.2834226
  18. Li, W., Wen, X., Zhang, J., et al.: Neutral point voltage balance and surge voltage reduction for three-level converters in PMSM starting process based on narrow pulse suppression. J. Power Electron. 22, 1033-1046 (2022) https://doi.org/10.1007/s43236-022-00405-1
  19. Khan, M.N.H., Forouzesh, M., Siwakoti, Y., et al.: Switched capacitor integrated (2n+1)-Level step-up single-phase inverter. IEEE Trans. Power Electron. 35, 8248-8260 (2020) https://doi.org/10.1109/TPEL.2019.2963344
  20. Wang, Y., Zhang, H., Lai, J., et al.: Extendable space-type switched-capacitor multilevel inverter with fault-tolerant capability. J. Power Electron. 22, 923-934 (2022) https://doi.org/10.1007/s43236-022-00436-8
  21. Ye, Y., Zhang, G., Wang, X., et al.: Self-Balanced switched-capacitor thirteen-level inverters with reduced capacitors count. IEEE Trans. Industr. Electron. 69, 1070-1076 (2022) https://doi.org/10.1109/TIE.2021.3050378
  22. Narimani, M., Wu, B., Cheng, Z., et al.: A new nested neutral point-clamped (NNPC) converter for medium-voltage (MV) power conversion. IEEE Trans. Power Electron. 29, 6375-6382 (2014) https://doi.org/10.1109/TPEL.2014.2306191
  23. Bahrami, A., Narimani, M.: A sinusoidal pulsewidth modulation (SPWM) technique for capacitor voltage balancing of a nested T-Type four-level inverter. IEEE Trans. Power Electron. 34, 1008-1012 (2019) https://doi.org/10.1109/TPEL.2018.2846618
  24. Wu, M., Wang, K., Yang, K., et al.: Unified selective harmonic elimination control for four-level hybrid-clamped inverters. IEEE Trans. Power Electron. 35, 11488-11501 (2020) https://doi.org/10.1109/TPEL.2020.2985090
  25. Wang, K., Zheng, Z., Li.Y,: Topology and control of a four-level ANPC inverter. IEEE Trans. Power Electron. 35, 2342-2352 (2020) https://doi.org/10.1109/TPEL.2019.2927500
  26. Chen, P., Xiao, F., Liu, J., et al.: Unbalanced control strategy featuring inconsistent sub-module voltage for modular multilevel converter-bidirectional DC-DC converter. J. Power Electron. 22, 750-763 (2022) https://doi.org/10.1007/s43236-022-00397-y
  27. Ye, Z., Lei, Y., Liao, Z., et al.: Investigation of capacitor voltage balancing in practical implementations of flying capacitor multilevel converters. IEEE Trans. Power Electron. 37, 2921-2935 (2022) https://doi.org/10.1109/TPEL.2021.3119409