DOI QR코드

DOI QR Code

Research on Stability of Control for Quadruped Robot with Robust Leg Structure Design

강인한 다리 구조 설계에 따른 사족 보행 로봇 제어 안정성 연구

  • Hosun Kang (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Jaehoon An (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Hyeonje Cha (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Wookjin Ahn (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Hwayoung Song (Department of Electrical and Electronics Engineering, Pusan National University) ;
  • Inho Lee (Department of Electronics Engineering, Pusan National University)
  • Received : 2023.01.27
  • Accepted : 2023.03.16
  • Published : 2023.05.31

Abstract

This paper presents research on the stability of control for a quadruped robot with two different leg structure designs. The focus of the research is on the design and analysis of the leg structures in terms of their impact on the stability and robustness of the robot's motion. First, a static analysis was performed in the simulation to compare the structural strength of the legs when the same force was applied. Secondly, two quadruped robots were built, each equipped with differently designed legs, and performed trot gait walking in the real world. And the states of the robots and the torques of each joint were analyzed and compared. In conclusion, based on the results of structural analysis in simulation and the actual walking experiments with the robots, it was demonstrated that the legs designed to be structurally robust improved the control stability of the quadruped robot.

Keywords

Acknowledgement

This research was supported by 2021 BK21 FOUR Program of Pusan National University This work was supported by Police-Lab 2.0 Program (www.kipot.or.kr) funded by the Ministry of Science and ICT (MSIT,Korea) & Korean National Police Agency (No. 210121M05) This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1C1C1009989)

References

  1. Y. Ock, H. Kang, and J. Lee, "Modified ORB-SLAM Algorithm for Precise Indoor Navigation of a Mobile Robot," The Journal of Korea Robotics Society, vol. 15, no. 3, pp. 205-211, 2020, DOI: 10.7746/jkros.2020.15.3.205.
  2. B. Choi, G. Kang, Y. Roh, and Y. Cho, "Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments," The Journal of Korea Robotics Society, vol. 17, no. 4, pp. 397-406, 2022, DOI: 10.7746/jkros.2022.17.4.397.
  3. M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy and R. Siegwart, "State Estimation for Legged Robots: Consistent Fusion of Leg Kinematics and IMU," Robotics: Science and Systems VIII, pp. 17-24, 2013, DOI: https://doi.org/10.7551/mitpress/9816.003.0008
  4. M.-K. Jung and J.-B. Song, "Robust Global Localization based on Environment map through Sensor Fusion," Journal of Korea Robotics Society, vol. 9, no. 2, pp. 96-103, Jun., 2014, DOI: 10.7746/jkros.2014.9.2.096.
  5. F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, and M. Hutter, "Dynamic Locomotion on Slippery Ground," IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4170-4176, Oct., 2019, DOI: 10.1109/LRA.2019.2931284.
  6. M. Focchi, A. D. Prete, J. Havoutis, R. Featherstone, D. G. Caldwell, and C. Semini, "High-slope terrain locomotion for torque-controlled quadruped robots," Autonomous Robots, vol. 41, pp. 259-272, May, 2017, DOI: 10.1007/s10514-016-9573-1.
  7. M. H. Raibert, "Hopping in legged systems - Modeling and simulation for the two-dimensional one-legged case," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-14, no. 3, pp. 451-463, May-Jun., 1984, DOI: 10.1109/TSMC.1984.6313238.
  8. M. Ahmadi and M. Buehler, "The ARL monopod II running robot: control and energetics," IEEE International Conference on Robotics and Automation (ICRA), Detroit, USA, 1999, DOI: 10.1109/ROBOT.1999.770352.
  9. I. Poulakakis, J. A. Smith, and M. Buehler, "Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot, "The International Journal of Robotics, vol. 24, no. 4, pp. 239-256, Apr., 2005, DOI: 10.1177/0278364904050917.
  10. S. Kitano, S. Hirose, A. Horigome, and G. Endo, "TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking," Robomech, vol. 3, no. 8, Mar., 2016, DOI: 10.1186/s40648-016-0047-1.
  11. H. Chai, Y. Li, R. Song, G. Zhang, Q. Zhang, S. Liu, J. Hou, Y. Xin, M. Yuan, G. Zhang, and Z. Yang, "A survey of the development of quadruped robots: Joint configuration, dynamic locomotion control method and mobile manipulation approach," Biomimetic Intelligence and Robotics, vol. 2, no. 1, pp. 1-13, Mar., 2022, DOI: 10.1016/j.birob.2021.100029.
  12. T. Chen, X. Sun, Z. Xu, Y. Li, X. Rong, and L. Zhou, "A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution," Journal of Bionic Engineering, vol. 16, pp. 621-632, Jul., 2019, DOI: 10.1007/s42235-019-0050-3.
  13. C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell, "Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 635-646, Apr., 2016, DOI: 10.1109/TMECH.2016.2616284.
  14. M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. Hoepflinger, "Anymal-a highly mobile and dynamic quadrupedal robot," IEEE/RSJ international Workshop on intelligent robots and systems (IROS), Daejeon, Korea, 2016, DOI: 10.1109/IROS.2016.7758092.
  15. B. Katz, J. D. Carlo, and S. Kim, "Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control," IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, DOI: 10.1109/ICRA.2019.8793865.
  16. J. D. Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, DOI: 10.1109/IROS.2018.8594448.
  17. H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock and M. Diehl, "qpOASES: A parametric active-set algorithm for quadratic programming," Mathematical Programming Computation, vol. 6, pp. 327-363, Apr., 2SSSS014, DOI: 10.1007/s12532-014-0071-1.
  18. D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, "Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control," Robotics, 2019, DOI: 10.48550/arXiv.1909.06586.
  19. G. V. Ferreira, F. L. Neto, and M. Silva Pestana, "Analysis of the mechanical behavior of a composite blade used in hydrokinetic turbines," 23rd ABCM international congress of mechanical engineering, Rio de Janeiro, Brazil, 2015, DOI: 10.20906/CPS/COB-2015-0385.