Acknowledgement
This research was supported by 2021 BK21 FOUR Program of Pusan National University This work was supported by Police-Lab 2.0 Program (www.kipot.or.kr) funded by the Ministry of Science and ICT (MSIT,Korea) & Korean National Police Agency (No. 210121M05) This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1C1C1009989)
References
- Y. Ock, H. Kang, and J. Lee, "Modified ORB-SLAM Algorithm for Precise Indoor Navigation of a Mobile Robot," The Journal of Korea Robotics Society, vol. 15, no. 3, pp. 205-211, 2020, DOI: 10.7746/jkros.2020.15.3.205.
- B. Choi, G. Kang, Y. Roh, and Y. Cho, "Loosely Coupled LiDAR-visual Mapping and Navigation of AMR in Logistic Environments," The Journal of Korea Robotics Society, vol. 17, no. 4, pp. 397-406, 2022, DOI: 10.7746/jkros.2022.17.4.397.
- M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring, C. D. Remy and R. Siegwart, "State Estimation for Legged Robots: Consistent Fusion of Leg Kinematics and IMU," Robotics: Science and Systems VIII, pp. 17-24, 2013, DOI: https://doi.org/10.7551/mitpress/9816.003.0008
- M.-K. Jung and J.-B. Song, "Robust Global Localization based on Environment map through Sensor Fusion," Journal of Korea Robotics Society, vol. 9, no. 2, pp. 96-103, Jun., 2014, DOI: 10.7746/jkros.2014.9.2.096.
- F. Jenelten, J. Hwangbo, F. Tresoldi, C. D. Bellicoso, and M. Hutter, "Dynamic Locomotion on Slippery Ground," IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4170-4176, Oct., 2019, DOI: 10.1109/LRA.2019.2931284.
- M. Focchi, A. D. Prete, J. Havoutis, R. Featherstone, D. G. Caldwell, and C. Semini, "High-slope terrain locomotion for torque-controlled quadruped robots," Autonomous Robots, vol. 41, pp. 259-272, May, 2017, DOI: 10.1007/s10514-016-9573-1.
- M. H. Raibert, "Hopping in legged systems - Modeling and simulation for the two-dimensional one-legged case," IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-14, no. 3, pp. 451-463, May-Jun., 1984, DOI: 10.1109/TSMC.1984.6313238.
- M. Ahmadi and M. Buehler, "The ARL monopod II running robot: control and energetics," IEEE International Conference on Robotics and Automation (ICRA), Detroit, USA, 1999, DOI: 10.1109/ROBOT.1999.770352.
- I. Poulakakis, J. A. Smith, and M. Buehler, "Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot, "The International Journal of Robotics, vol. 24, no. 4, pp. 239-256, Apr., 2005, DOI: 10.1177/0278364904050917.
- S. Kitano, S. Hirose, A. Horigome, and G. Endo, "TITAN-XIII: sprawling-type quadruped robot with ability of fast and energy-efficient walking," Robomech, vol. 3, no. 8, Mar., 2016, DOI: 10.1186/s40648-016-0047-1.
- H. Chai, Y. Li, R. Song, G. Zhang, Q. Zhang, S. Liu, J. Hou, Y. Xin, M. Yuan, G. Zhang, and Z. Yang, "A survey of the development of quadruped robots: Joint configuration, dynamic locomotion control method and mobile manipulation approach," Biomimetic Intelligence and Robotics, vol. 2, no. 1, pp. 1-13, Mar., 2022, DOI: 10.1016/j.birob.2021.100029.
- T. Chen, X. Sun, Z. Xu, Y. Li, X. Rong, and L. Zhou, "A Trot and Flying Trot Control Method for Quadruped Robot Based on Optimal Foot Force Distribution," Journal of Bionic Engineering, vol. 16, pp. 621-632, Jul., 2019, DOI: 10.1007/s42235-019-0050-3.
- C. Semini, V. Barasuol, J. Goldsmith, M. Frigerio, M. Focchi, Y. Gao, and D. G. Caldwell, "Design of the Hydraulically Actuated, Torque-Controlled Quadruped Robot HyQ2Max," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 635-646, Apr., 2016, DOI: 10.1109/TMECH.2016.2616284.
- M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis, J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm, S. Bachmann, A. Melzer, and M. Hoepflinger, "Anymal-a highly mobile and dynamic quadrupedal robot," IEEE/RSJ international Workshop on intelligent robots and systems (IROS), Daejeon, Korea, 2016, DOI: 10.1109/IROS.2016.7758092.
- B. Katz, J. D. Carlo, and S. Kim, "Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control," IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, 2019, DOI: 10.1109/ICRA.2019.8793865.
- J. D. Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, "Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control," IEEE International Workshop on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, DOI: 10.1109/IROS.2018.8594448.
- H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock and M. Diehl, "qpOASES: A parametric active-set algorithm for quadratic programming," Mathematical Programming Computation, vol. 6, pp. 327-363, Apr., 2SSSS014, DOI: 10.1007/s12532-014-0071-1.
- D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, "Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control," Robotics, 2019, DOI: 10.48550/arXiv.1909.06586.
- G. V. Ferreira, F. L. Neto, and M. Silva Pestana, "Analysis of the mechanical behavior of a composite blade used in hydrokinetic turbines," 23rd ABCM international congress of mechanical engineering, Rio de Janeiro, Brazil, 2015, DOI: 10.20906/CPS/COB-2015-0385.