DOI QR코드

DOI QR Code

Molecular epidemiology of Toxoplasma gondii in cattle in Korea

  • Kyoo-Tae Kim (College of Veterinary Medicine, Kyungpook National University) ;
  • Min-Goo Seo (College of Veterinary Medicine, Kyungpook National University)
  • 투고 : 2022.02.07
  • 심사 : 2023.04.18
  • 발행 : 2023.05.31

초록

Toxoplasmosis is a major public health concern, with raw or undercooked meat being the primary source of human infection. Knowledge regarding the molecular epidemiology of Toxoplasma gondii in cattle destined for human consumption in Korea is lacking. The present study aimed to genetically characterize the infectious strains of T. gondii. Overall, 455 cattle blood samples from 84 farms in the Gyeongnam-do (Province) were randomly collected in 2017. Nested PCR analysis revealed that only 3 (0.7%) samples were infected with T. gondii. The B1 gene sequence of T. gondii was observed to be similar (97.3-99.6%) to that of other T. gondii isolates. This is the first study to perform the molecular detection of T. gondii in cattle in Korea. Although the prevalence of infection was low, our findings suggest that cattle present a potential public health issue. It may be crucial to recognize the importance of T. gondii infection in cattle meat.

키워드

과제정보

This research was supported by Kyungpook National University Research Fund, 2022.

참고문헌

  1. Saadatnia G, Golkar M. A review on human toxoplasmosis. Scand J Infect Dis 2012;44(11):805-814. https://doi.org/10.3109/00365548.2012.693197
  2. Hong S, Lee HA, Lee YS, Chung YH, Kim O. Anti-toxoplasmosis effect of Dictamnus dasycarpus extract against Toxoplasma Gondii. J Biomed Res 2014;15(1):7-11. https://doi.org/10.12729/jbr.2014.15.1.007
  3. Tenter AM. Toxoplasma gondii in animals used for human consumption. Mem Inst Oswaldo Cruz 2009;104(2):364-369. https://doi.org/10.1590/s0074-02762009000200033
  4. EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, et al. Public health risks associated with food-borne parasites. EFSA J 2018;16(12):e05495. https://doi.org/https://doi.org/10.2903/j.efsa.2018.5495
  5. Oh J, Lee SH, Lee SJ, Kim YH, Park SC, et al. Detection of antibodies against Toxoplasma gondii in cattle raised in Gyeongbuk province, Korea. J Food Prot 2016;79(5):821-824. https://doi.org/10.4315/0362-028x.Jfp-15-512
  6. Seo MG, Jang YS, Lee EM, Park NC, Kwak DM. Prevalence of antibodies to Toxoplasma gondii in cattle and pigs reared in eastern areas of Gyeongbuk province. Korean J Vet Serv 2009;32(2):131-137 (in Korean). https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001362623
  7. Seo MG, Do JC, Ouh IO, Cho MH, Kim JK, et al. Prevalence of infectious agents in cattle reared in Ulleung island. Korean J Vet Serv 2011;34(4):303-311 (in Korean). https://www.kci.go.kr/kci-portal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001623287 https://doi.org/10.7853/kjvs.2011.34.4.303
  8. KSIS. Number of farms in households and animals in heads by type. Korean Statistical Information Service. 2017.
  9. Thrusfield MV, Christley R. Veterinary Epidemiology. 4th ed. Wiley-Blackwell. Hoboken, USA. 2018.
  10. Grigg ME, Boothroyd JC. Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol 2001;39(1):398-400. https://doi.org/10.1128/jcm.39.1.398-400.2001
  11. Kwak D, Seo MG. Genetic analysis of zoonotic gastrointestinal protozoa and microsporidia in shelter cats in South Korea. Pathogens 2020;9(11):894. https://doi.org/10.3390/pathogens9110894
  12. van der Puije WN, Bosompem KM, Canacoo EA, Wastling JM, Akanmori BD. The prevalence of anti-Toxoplasma gondii antibodies in Ghanaian sheep and goats. Acta Trop 2000;76(1):21-26. https://doi.org/10.1016/s0001-706x(00)00084-x
  13. Sroka J, Karamon J, Wojcik-Fatla A, Piotrowska W, Dutkiewicz J, et al. Toxoplasma gondii infection in slaughtered pigs and cattle in Poland: seroprevalence, molecular detection and characterization of parasites in meat. Parasit Vectors 2020;13(1):223. https://doi.org/10.1186/s13071-020-04106-1
  14. Fazel R, Rezanezhad H, Solhjoo K, Kalantari M, Erfanian S, et al. PCR-based detection of Toxoplasma gondii from cattle in southern Iran. Comp Immunol Microbiol Infect Dis 2021;77:101677. https://doi.org/10.1016/j.cimid.2021.101677
  15. Dubey JP, Jones JL. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 2008;38(11):1257-1278. https://doi.org/10.1016/j.ijpara.2008.03.007
  16. Dubey JP, Thulliez P. Persistence of tissue cysts in edible tissues of cattle fed Toxoplasma gondii oocysts. Am J Vet Res 1993;54(2):270-273. https://pubmed.ncbi.nlm.nih.gov/8430937 https://doi.org/10.2460/ajvr.1993.54.02.270
  17. Cook AJ, Gilbert RE, Buffolano W, Zufferey J, Petersen E, et al. Sources of toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. BMJ 2000;321(7254):142-147. https://doi.org/10.1136/bmj.321.7254.142
  18. Dubey JP. Toxoplasmosis of animals and humans. 2nd ed. CRC Press. Beltsville, USA. 2010.
  19. Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 1995;172(6):1561-1566. https://doi.org/10.1093/infdis/172.6.1561
  20. Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 2010;137:1-11. https://doi.org/10.1017/s0031182009991065