DOI QR코드

DOI QR Code

A comparative analysis of seismic and structural parameters for historical period earthquakes in Türkiye

  • Ercan Isik (Department of Civil Engineering, Bitlis Eren University)
  • Received : 2023.02.12
  • Accepted : 2023.04.25
  • Published : 2023.05.25

Abstract

The high seismic risk has once again revealed in Türkiye with two major earthquakes that occurred on 06.02.2023, which took its place among the most destructive earthquakes in the last century. Totally, 65 earthquakes that occurred in the historical period in Türkiye were taken into account within the scope of this study. The seismic parameters were compared by considering the last two earthquake hazard maps for the epicenters of these earthquakes. Earthquake Intensity (I) of historical earthquakes were converted to Peak Ground Acceleration (PGA) by using suggested relations. Structural analyzes were performed for a sample reinforced-concrete building by using the obtained PGA's and predicted PGA's in the last two earthquake hazard maps. In the structural analysis, two different material groups such as low (C12-S220) and normal (C25-S420) were selected. As the material strength increased, the period value decreased, while the seismic capacity and stiffness increased. It has been determined that there are differences between the measured and proposed seismic risks for some earthquakes, and as a result, there are significant differences between the expected target displacement values from the structures. Therefore, it will not be possible to estimate the damage and to determine the building performance realistically. The main purpose of the study is to reveal whether the earthquake risk is adequately represented on seismic and structural parameters.

Keywords

References

  1. Ademovic, N., Demir, V., Cvijic-Amulic, S., Malek, J., Prachar, I. and Vackar, J. (2021), "Compilation of the seismic hazard maps in Bosnia and Herzegovina", Soil Dyn. Earthq. Eng., 141, 106500. https://doi.org/10.1016/j.soildyn.2020.106500.
  2. Ademovic, N., Hrasnica, M. and Oliveira, D.V. (2013), "Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina", Eng. Struct., 50, 13-29. https://doi.org/10.1016/j.engstruct.2012.11.031.
  3. Aksoy, E., Inceoz, M. and Kocyigit, A. (2007), "Lake Hazar basin: A negative fower structure on the East Anatolian fault system (EAFS), SE Turkey", Turk. J. Earth Sci., 16, 319-338.
  4. Alkan, H., Buyuksarac, A., Bektas, O. and Isik, E. (2021), "Coulomb stress change before and after 24.01. 2020 Sivrice (Elazig) Earthquake (Mw=6.8) on the East Anatolian fault zone", Arab. J. Geosci., 14(23), 1-12. https://doi.org/10.1007/s12517-021-09080-1.
  5. Alpyurur, M. and Lav, M.A. (2022), "An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs", Nat. Hazard., 114, 335-365. https://doi.org/10.1007/s11069-022-05392-x.
  6. Alsan, E., Tezucan, L. and Bath, M. (1976), "An earthquake catalogue for Turkey for the interval 1913-1970", Tectonophys., 31(1), T13-T19. https://doi.org/10.1016/0040-1951(76)90159-1.
  7. Anonymous Ankara University (2023), https://acikders.ankara.edu.tr/pluginfile.php/119322/mod_resource/content/0/Ders_10_Depremin_Olceklendirilmesi_%28Siddet_Buyukluk_Enerji%29.pdf.
  8. Anonymous Historical Earthquakes (2023), http://www.deprem.afad.gov.tr
  9. Anonymous Historical Earthquakes (2023), http://www.koeri.boun.edu.tr
  10. Antoniou, S. and Pinho, R. (2022), Seismostruct-Seismic Analysis Program by Seismosoft; Technical Manual and User Manual, Seismosoft, Pavia, Italy.
  11. Balan, S.F., Tiganescu, A., Apostol, B.F. and Danet, A. (2020), "Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance", Earthq. Struct., 17(4), 365-372. https://doi.org/10.12989/eas.2019.17.4.365.
  12. Balun, B., Nemutlu, O.F., Benli, A. and Sari, A. (2020), "Estimation of probabilistic hazard for Bingol province, Turkey", Earthq. Struct., 18(2), 223-231. https://doi.org/10.12989/eas.2020.18.2.223.
  13. Bayer, H.J., El-Isa, Z., Hotzl, H., Mechie, J., Prodehl, C. and Safarini, G. (1989), "Large tectonic and lithospheric structures of the Red Sea region", J. African Earth Sci., 8(2-4), 565-587. https://doi.org/10.1016/S0899-5362(89)80045-4.
  14. Bayik, C. (2021), "Deformation analysis of 2020 mw 5.7 Karliova, Turkey, earthquake using DInSAR method with diferent incidence angle SAR data", Arab. J. Geosci., 14(4), 1-12. https://doi.org/10. 1007/s12517-021-06670-x. https://doi.org/10.1007/s12517-021-06670-x
  15. Bayrak, E. (2018), "Turkiye icin siddet-magnitud azalim iliskisinin gelistirilmesi ve makro sismik deprem tehlike haritasinin hazirlanmasi", Doktora Tezi, Karadeniz Teknik u niversitesi, Trabzon, Turkiye.
  16. Bilgin, H. and Huta, E. (2018), "Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania", Earthq. Struct., 14(6), 599-614. https://doi.org/10.12989/eas.2018.14.6.000.
  17. Bilgin, H., Hadzima-Nyarko, M., Isik, E., Ozmen, H.B. and Harirchian, E. (2022a), "A comparative study on the seismic provisions of different codes for RC buildings", Struct. Eng. Mech., 83(2), 195-206. https://doi.org/10.12989/sem.2022.83.2.195.
  18. Bilgin, H., Shkodrani, N., Hysenlliu, M., Ozmen, H.B., Isik, E. and Harirchian, E. (2022), "Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes", Eng. Fail. Anal., 131, 105824. https://doi.org/10.1016/j.engfailanal.2021.105824.
  19. Bosworth, W., Huchon, P. and McClay, K. (2005), "The red sea and gulf of aden basins", J. Afr. Earth Sci., 43(1-3), 334-378. https://doi.org/10.1016/j. jafrearsci.2005.07.020.
  20. Buyuksarac, A., Isik, E. and Harirchian, E. (2021), "A case study for determination of seismic risk priorities in Van (Eastern Turkey)", Earthq. Struct., 20(4), 445-455. https://doi.org/10.12989/eas.2021.20.4.445.
  21. Chopra, A.K. and Goel, R.K. (2002), "A modal pushover analysis procedure for estimating seismic demands for buildings", Earthq. Eng. Struct. Eng. Dyn., 31(3), 561-582. https://doi.org/10.1002/eqe.144.
  22. Coban, K.H. and Sayil, N. (2020), "Diferent probabilistic models for earthquake occurrences along the North and East Anatolian fault zones", Arab. J. Geosci., 13(18), 1-16. https://doi.org/10.1007/ s12517-020-05945-z.
  23. Deierlein, G.G. (2004), "Overview of comprehensive framework for earthquake performance assessment", Proceedings of an International Workshop of Performance - Based Seismic Design Concept and Implementation, Bled, Slovenia, June.
  24. Demirci, A. (2019), "Frequency-dependent body-Q and coda-Q in Karliova Triple Junction and its vicinity, eastern Turkey", Turk. J. Earth. Sci., 28, 902-919. https://doi.org/10.3906/yer-1903-2.
  25. DEMP (2023), https://tdth.afad.gov.tr
  26. Ekinci, Y.L. and Yigitbas, E. (2015), "Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey)", Geodin. Acta, 27, 300-319. https://doi.org/10.1080/09853111.2015.1046354.
  27. Elnashai, A.S. (2001), "Advanced inelastic static (pushover) analysis for earthquake applications", Struct. Eng. Mech., 12(1),51-69. https://doi.org/10.12989/sem.2001.12.1.051.
  28. EN 1998-3 (2005), Eurocode 8: Design of Structures for Earthquake Resistance - Part 3: Assessment and Retroftting of Buildings, European Committee for Standardization, Brussels, Belgium.
  29. Erdik, M. (2013), "Earthquake risk in Turkey", Sci., 341(6147), 724-725. https://doi.org/10.1126/science.1238945.
  30. Erdik, M., Sesetyan, K., Demircioglu, M.B. and Durukal, E. (2006), "Ulastirma Bakanligi Demiryollari, Limanlar ve Havameydanlari Insaati Genel Mudurlugu Kiyi Yapilari, Demiryollari ve Havameydanlari Insaatlari Deprem Teknik Yonetmeligi icin Deprem Tehlikesi Belirlemesi", Deprem Muhendisligi Anabilim Dali Bogazici universitesi Kandilli Rasathanesi ve Deprem Arastirma Enstitusu, Istanbul, Turkiye.
  31. Giardini, D., Grunthal, G., Shedlock, K.M. and Zhang, P. (1999), "The GSHAP global seismic hazard map", Ann. Geophys., 42(6), 957-974. https://doi.org/ 10.4401/ag-3784.
  32. Gunes, N. (2009), "Yakin fay yer hareketleri ve performansa dayali tasarima uyarlanmalari", Doktora tezi, Firat universitesi, Elazig, Turkiye.
  33. Gunes, N., Ulucan, Z.C. and Erdogan, A.S. (2013), "Yakin fay yer hareketlerinin yon etkisi", Nigde Omer Halisdemir universitesi Muhendislik Bilimleri Dergisi, 2(2), 21-33. https://doi.org/10.28948/ngumuh. 239375.
  34. Gunes, O. (2015), "Turkey's grand challenge: Disaster-proof building inventory within 20 years", Case Stud. Constr. Mater., 2, 18-34. https://doi.org/10.1016/j.cscm.2014.12.003.
  35. Hasterok, D., Halpin, J.A., Collins, A.S., Hand, M., Kreemer, C., Gard, M.G. and Glorie, S. (2022), "New maps of global geological provinces and tectonic plates", Earth Sci. Rev., 231, 104069. https://doi.org/10.1016/j.earscirev.2022.104069.
  36. Isik, E. (2013), "Bitlis ili'nin depremselligi", Erciyes u niversitesi Bilim, Enstitusu Bilim, Dergisi, 29, 267-273.
  37. Isik, E. (2022), "Comparative investigation of seismic and structural parameters of earthquakes (M ≥ 6) after 1900 in Turkey", Arab. J. Geosci., 15, 971. https://doi.org/10.1007/s12517-022-10255-7.
  38. Isik, E. and Harirchian, E. (2022), "A comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures", Build., 12(10), 1573. https://doi.org/10.3390/buildings12101573.
  39. Isik, E., Buyuksarac, A., Ekinci, Y.L., Aydin, M.C. and Harirchian, E. (2020), "The effect of site-specific design spectrum on earthquake-building parameters: A case study from the Marmara Region (NW Turkey)", Appl. Sci., 10, 7247. https://doi.org/10.3390/app10207247.
  40. Isik, E., Hadzima-Nyarko, M., Bilgin, H., Ademovic, N., Buyuksarac, A., Harirchian, E., Bulajic, B., O zmen, H.B. and Aghakouchaki Hosseini, S.E. (2022), "A comparative study of the effects of earthquakes in different countries on target displacement in mid-rise regular RC structures", Appl. Sci., 12(23), 12495. https://doi.org/10.3390/app122312495.
  41. Isik, E., Isik, M.F. and Bulbul, M.A. (2017), "Web based evaluation of earthquake damages for reinforced concrete buildings", Earthq. Struct., 13(4), 387-396. https://doi.org/10.12989/eas.2017.13.4.387.
  42. Isik, E., Ulutas, H. and Buyuksarac, A. (2023), "The comparison of sectional damages in reinforced-concrete structures and seismic parameters on regional basis; A case study from western Turkiye (Aegean Region)", Earthq. Struct., 24(1), 37-51. https://doi.org/10.12989/eas.2023.24.1.037.
  43. Kadirioglu, F.T., Kartal, R.F., Kilic, T., Kalafat, D., Duman, T.Y., Azak, T.E. and Emre, O. (2018), "An improved earthquake catalogue (M≥4.0) for Turkey and its near vicinity (1900-2012)", Bull. Earthq. Eng., 16(8), 3317-3338. https://doi.org/10.1007/s10518-016-0064-8.
  44. Kalafat, D. (2016), "Statistical evaluation of Turkey earthquake data (1900-2015): A case study", Eastern Anatolian J. Sci., 2(1), 14-36.
  45. Kayabali, K. (1995), "Sismik tehlike analizi: Teori ve uygulama", Jeoloji Muhendisligi, 46, 28-43.
  46. Khan, R.A. (2014), "Performance based seismic design of reinforced concrete building", Int. J. Innov. Res. Sci. Eng. Technol., 3(6), 13495-13506. https://doi.org/10.4236/ojce.2016.62017.
  47. Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Pearson Education, New Delhi, India.
  48. Kutanis, M., Ulutas, H., and Isik, E. (2018), "PSHA of Van province for performance assessment using spectrally matched strong ground motion records", J. Earth Sys. Sci., 127(7), 99. https://doi.org/10.1007/s12040-018-1004-6.
  49. Leousis, D. and Pnevmatikos, N. (2018), "Earthquake losses assessment in the municipality of Kifissia (Athens-Greece) using the Earthquake Loss Estimation Routine (ELER)", Int. J. Earthq. Eng. Haz. Mitig. (IREHM), 6(1), 11-20.
  50. Moehle, J. and Deierlein, G.G. (2004), "A framework methodology for performance-based earthquake engineering", 13th World Conference on Earthquake Engineering, Vancouver, Canada, August.
  51. Morell, K.D., Styron, R., Stirling, M., Grifn, J., Archuleta, R. and Onur, T. (2020), "Seismic hazard analyses from geologic and geomorphic data: Current and future challenges", Tectonics, 39(10), e20. https://doi.org/ 10.1029/2018TC005365.
  52. Okay, A.I. and Tuysuz, O. (1999), "Tethyan sutures of Northern Turkey", Spec. Publ. Geolog. Soc.: London, 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22.
  53. Pavic, G., Hadzima-Nyarko, M., and Bulajic, B. (2020), "A contribution to a uhs-based seismic risk assessment in Croatia - A case study for the city of Osijek", Sustainab. Basel, 12(5), 1796. https://doi.org/10.3390/su12051796.
  54. Pnevmatikos, N., Konstandakopoulou, F. and Koumoutsos, N. (2020), "Seismic vulnerability assessment and loss estimation in Cephalonia and Ithaca islands, Greece, due to earthquake events: A case study", Soil. Dyn. Earthq. Eng., 136, 106252. https://doi.org/10.1016/j.soildyn.2020.106252.
  55. Pnevmatikos, N., Konstandakopoulou, F., Papagiannopoulos, G., Hatzigeorgiou, G. and Papavasileiou, G. (2020a), "Influence of earthquake rotational components on the seismic safety of steel structures", Vib., 3(1), 42-50. https://doi.org/10.3390/vibration3010005.
  56. Reilinger, R.E., McClusky, S.C., Oral, M.B., King, R.W., Toksoz, M.N., Barka, A.A. and Sanli, I. (1997), "Global positioning system measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone", J. Geophys. Res.: Solid Earth, 102(B5), 9983-9999. https://doi.org/10.1029/96JB03736.
  57. Ricci, P., Di Domenico, M. and Verderame, G.M. (2022), "Effects of the in-plane/out-of-plane interaction in URM infills on the seismic performance of RC buildings designed to Eurocodes", J. Earthq. Eng., 26(3), 1595-1629. https://doi.org/10.1080/13632469.2020.1733137.
  58. Seismosoft SeismoStruct (2022), 2022- A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. http://www.seismosoft.com
  59. Sengor, A.M.C. and Yilmaz, Y. (1981), "Tethyan evolution of Turkey: A plate tectonic approach", Tectonophys., 75, 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  60. Sesetyan, K., Demircioglu Tumsa, M.B. and Akinci, A. (2019), "Evaluation of the seismic hazard in the Marmara Region (Turkey) based on updated databases", Geosci., 9(12), 489. https://doi.org/10.3390/geosciences9120489.
  61. Strukar, K., Sipos, T.K., Jelec, M. and Hadzima-Nyarko, M. (2019), "Efficient damage assessment for selected earthquake records based on spectral matching", Earthq. Struct., 17(3), 271-282. https://doi.org/10.12989/eas.2019.17.3.271.
  62. Tan, O. (2021), "A homogeneous earthquake catalogue for Turkey", Nat. Hazard. Earth Syst. Sci., 21(7), 2059-2073. https://doi.org/10.5194/ nhess-21-2059-2021.
  63. TBEC (2018), Turkish Building Earthquake Code; T.C. Resmi Gazete, Ankara, Turkey.
  64. TSDC-2007 (2007), Turkish Earthquake Code; T.C. Resmi Gazete, Ankara, Turkey.
  65. USGS (2010), "Porphyry Copper Assessment of the Tethys Region of Western and Southern Asia", Scientific Investigations Report 2010-5090-V; U.S. Geological Survey, Reston, VA, USA.
  66. Utkucu, M., Durmus, H., Yalcin, H., Budakoglu, E. and Isik, E. (2013), "Coulomb static stress changes before and after the 23 October 2011 Van, eastern Turkey, earthquake (MW=7.1): Implications for the earthquake hazard mitigation", Nat. Hazard. Earth Syst. Sci., 13(7), 1889-1902. https://doi.org/10.5194/nhess-13-1889-2013.
  67. Uzel, T., Eren, K., Gulal, E., Tiryakioglu, I., Dindar, A.A. and Yilmaz, H. (2013), "Monitoring the tectonic plate movements in Turkey based on the national continuous GNSS network", Arab. J. Geosci., 6(9), 3573-3580. https://doi.org/10.1007/s12517-012-0631-5.
  68. Xian, L., He, Z. and Ou, X. (2016), "Incorporation of collapse safety margin into direct earthquake loss estimate", Earthq. Struct., 10(2), 429-450. https://doi.org/10.12989/eas.2016.10.2.429.