Acknowledgement
The research described in this paper was partly funded by University of Mumbai (India) through its 'Minor Research Grant Scheme' under the funds received by the University Grant Commission.
References
- Barone, F.S., Rowe, R.K. and Quigley, R.M. (1992), "A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in a natural clayey soil", J. Contam. Hydrol., 10(3), 225-250. https://doi.org/10.1016/0169a-7722(92)90062-J
- Berlin, M., Vasudevan, M., Suresh Kumar, G. and Nambi, I.M. (2015), "Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario", J. Earth Syst. Sci., 124(3), 655-674. https://doi.org/10.1007/s12040-015-0562-0
- Codina, R. (1998), "Comparison of some finite element methods for solving the diffusion-convection-reaction equation", Compos. Meth. Appl. Mech. Eng., 156(2), 185-210. https://doi.org/10.1016/S0045-7825(97)00206-5
- Craig, J.R. and Rabideau, A.J. (2006), "Finite difference modelling of contaminant transport using analytic element flow solutions", Adv. Water Resour., 29(7), 1075-108. https://doi.org/10.1016/j.advwatres.2005.08.010
- Eljamal O., Jinno, K. and Hosokawa, T. (2008), "Modeling of solute transport with bioremediation processes using sawdust as a matrix", Water Air Soil Pollut., 195, 115-127. https://doi.org/10.1007/s11270-008-9731-y
- Eljamal, O., Jinno, K. and Hosokawa, T. (2009), "Modelling of solute transport and biological sulphate reduction using low cost electron donor", Environ. Geol., 56, 1605-1613. https://doi.org/10.1007/s00254-008-1258-4
- Eljamal, O., Sasaki, K. and Hirajima, T. (2011), "Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron", Appl. Math. Modell., 35(10), 5198-5207. https://doi.10.org/ 1016/j.apm.2011.04.040 https://doi.org/10.org/1016/j.apm.2011.04.040
- Eljamal, O., Okawauchi, J. and Hiramatsu, K. (2012), "Removal of phospohorous from water using marble dust as sorbent material", J. Environ. Protect., 3(8). https://doi.org/10.4236/jep.2012.38084
- Eljamal O., Sasaki, K. and Hirajima, T. (2013), "Sorption kinetic of arsenate as water contaminant on zero valentiron", J. Water Resour. Protect., 5(6), 563-567. https://doi.org/ 10.4236/jwarp.2013.56057
- Gamze V., Ahmet D., Selin T., Elif, S. and Ebru, A. (2011), "Migration behavior of landfill leachate contaminants through alternative composite liners", Sci. Total Environ., 409(17), 3183-3196. https://doi.org/10.1016/j.scitotenv.2011.04.044
- Harari, I. and Hughes, T.J.R. (1994), "Stabilised finite element methods for steady advection-diffusion with production", Compos. Meth. Appl. Mech. Eng., 115(2), 165-191. https://doi.org/10.1016/0045-7825(94)90193-7
- Hsu (2004), "Flow and solute transport in strongly heterogeneous porous media", J. Hazard. Toxic Radioact. Waste, 8(3), 148-154. https://doi.org/10.1061/(ASCE)1090-025X(2004)8:3(148)
- Klotz, D., Seiler, K.P. and Moser, H. (1980), "Dispersivity and velocity relationship from laboratory and field experiments", J. Hydrol., 45(4), 169-184. https://doi.org/10.1016/0022-1694(80)90018-9
- Maamoun, I., Eljamal, O., Eljamal, R., Falyouna, O. and Sugihara, Y. (2020), "Promoting aqueous and transport characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings", Appl. Surf. Sci., 506, 145018. https://doi.org/10.1016/j. apsusc.2019.145018
- Maamoun, I., Falyouna, O., Eljamal, R., Bensaida, K. and Eljamal, O. (2021), "Optimization modelling of nFe0/Cu-PRB design for Cr(VI) removal from groundwater", Int. J. Environ. Sci. Develop., 12(3), 131-138. https://doi.org/10.18178/ijesd.2021.12.5.1330
- Mamoun, I., Bensaida, K., Eljamal, R., Falyouna, O., Tanaka, K., Tosco, T., Sugihara, Y. and Eljamal, O. (2022), "Rapid and efficient chromium (VI) removal from aqueous solutions using nickel hydroxide nanoplates (nHiHs)", J. Mole. Liq., 358, 119216. https://doi.org/10.1016/j.molliq.2022.119216
- Massimo, R., David, H., Gabriele, C. and Peter, K. (2012), "Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media", Transp. Porous Med., 93(3), 347-362. https://doi.org/10.1007/s11242-012-9953-8
- Patil, S.B. and Chore, H.S. (2014), "Contaminant transport through porous media: An overview of experimental and numerical studies", Adv. Environ. Res., 2(1), 45-69. https://doi.org/10.12989/aer.2014.3.1.045
- Patil, S.B. and Chore, H.S. (2015), "Transport of chloride through saturated soil column: An experimental study", Adv. Environ. Res., 4(2), 105-117. https://doi.org/10.12989/aer.2015.4.2.105
- Fox, P.J., Lee, J. and Lenhart, J.J. (2011), "Coupled consolidation and contaminant transport in compressible porous media", Int. J. Geomech., 11(2), 113-123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000035
- Prakash, A. (2000), "Analytical modelling of contaminant transport through vadose and saturated soil zones", J. Hydrol. Eng., 126(10), 773-777. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(773)
- Praveen Kumar, R. and Dodagoudar, G.R. (2008), "A 2-D contaminant transport model for unsaturated soils", Eng. Comput. Mech., 161(3), 129-138. https://doi.org/10.1680/eacm.2008.161.3.129
- Remesikova, M. (2007), "Numerical solution of two-dimensional convection-diffusion adsorption problems using an operator splitting scheme", Appl. Math. Comput., 184(1), 116-130. https://doi.org/10.1016/j.amc.2005.06.018
- Rowe, R.K. and Booker, J.R. (1985), "Two-dimensional pollutant migration in soils of finite depth", Canadian Geotech. J., 22(4), 429-436. https://doi.org/10.1139/t85-062
- Rowe, R.K. and Booker, J.R. (1986), "A finite layer technique for calculating three-dimensional pollutant migration in soil", Geotechnique, 36(2), 205-214. https://doi.org/10.1680/geot.1986.36.2.205
- Rowe, R.K. (1989), "Movement of pollutants through clayey soil", Proceedings of the 37th Annual Geotechnical Conference. Minnesota Section ASCE, Minnesota, U.S.A.
- Rowe, R.K. and Badv, K. (1996), "Chloride migration through clayey silt underlain by fine sand or silt", J. Geotech. Eng, ASCE, 122(1), 60-68. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(60)
- Rosqvist, H. and Destouni, G. (2000), "Solute transport through preferential pathways in municipal solid waste", J. Contam. Hydrol., 46(1), 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3
- Sharma, P.K., Sawant, V.A., Shukla, S.K. and Khan, Z. (2013), "Experimental and numerical simulation of contaminant transport through layered soil", Int. J. Geotech. Eng., 8(4), 345-351. https://doi.org/10.1179/1939787913Y.0000000014
- Sheu, T.W.H. and Chen (2002), "Finite element analysis of contaminant transport in groundwater", Appl. Math. Comput., 127(1), 23-43. https://doi.org/10.1016/S0096-3003(00)00160-0
- Srivastva, R., Sharma, P.K., Brusseau and M.L. (2002), "Spatial moments for reactive transport in heterogeneous porous media", J. Hydrol. Eng. 7(4), 336-341. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(336)
- Starr, R.C., Gillham, R.W. and Sudicky, E.A. (2008), "Experimental investigation of solute transport in stratified porous media: The reactive case", Water Resour. Res., 21(7), 1043-1050. https://doi.org/10.1029/WR021i007p01043
- Swami, D., Sharma, P.K. and Ojha, C.S.P. (2013), "Experimental investigation of solute transport in stratified porous media", J. Hydraul. Eng., 19(3), 145-153. https://doi.org/10.1080/09715010.2013.793930
- Wang, Q., Bian, J., Wan, H. and Gu, T. (2019), "Non-Fickian transport of ammonia nitrogen in vadose zone: experiments and modeling", Arab. J. Geosci., 12(23), 711. https://doi.org/10.1007/s12517-019-4941-8
- Xu, T., Ye, Y., Zhang, Y. and Xie, Y. (2019), "Recent advances in experimental studies of steady-state dilution and reactive mixing in saturated porous media", Water, 11(3), 1-17. https://doi.org/10.3390/w11010003
- Zhang, Q., Yu, Y. and Cui, Y. (2020), "The role of particle size and molar ratio of Ca2+/Na+ in the retention and remobilization of colloids in saturated porous media", Arab J. Geosci., 13, 273. https://doi.org/10.1007/s12517-020-5220-4