DOI QR코드

DOI QR Code

Assessing pollutants' migration through saturated soil column

  • Received : 2022.07.21
  • Accepted : 2023.05.15
  • Published : 2023.03.25

Abstract

In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.

Keywords

Acknowledgement

The research described in this paper was partly funded by University of Mumbai (India) through its 'Minor Research Grant Scheme' under the funds received by the University Grant Commission.

References

  1. Barone, F.S., Rowe, R.K. and Quigley, R.M. (1992), "A laboratory estimation of diffusion and adsorption coefficients for several volatile organics in a natural clayey soil", J. Contam. Hydrol., 10(3), 225-250. https://doi.org/10.1016/0169a-7722(92)90062-J
  2. Berlin, M., Vasudevan, M., Suresh Kumar, G. and Nambi, I.M. (2015), "Numerical modelling on fate and transport of petroleum hydrocarbons in an unsaturated subsurface system for varying source scenario", J. Earth Syst. Sci., 124(3), 655-674. https://doi.org/10.1007/s12040-015-0562-0
  3. Codina, R. (1998), "Comparison of some finite element methods for solving the diffusion-convection-reaction equation", Compos. Meth. Appl. Mech. Eng., 156(2), 185-210. https://doi.org/10.1016/S0045-7825(97)00206-5
  4. Craig, J.R. and Rabideau, A.J. (2006), "Finite difference modelling of contaminant transport using analytic element flow solutions", Adv. Water Resour., 29(7), 1075-108. https://doi.org/10.1016/j.advwatres.2005.08.010
  5. Eljamal O., Jinno, K. and Hosokawa, T. (2008), "Modeling of solute transport with bioremediation processes using sawdust as a matrix", Water Air Soil Pollut., 195, 115-127. https://doi.org/10.1007/s11270-008-9731-y
  6. Eljamal, O., Jinno, K. and Hosokawa, T. (2009), "Modelling of solute transport and biological sulphate reduction using low cost electron donor", Environ. Geol., 56, 1605-1613. https://doi.org/10.1007/s00254-008-1258-4
  7. Eljamal, O., Sasaki, K. and Hirajima, T. (2011), "Numerical simulation for reactive solute transport of arsenic in permeable reactive barrier column including zero-valent iron", Appl. Math. Modell., 35(10), 5198-5207. https://doi.10.org/ 1016/j.apm.2011.04.040 https://doi.org/10.org/1016/j.apm.2011.04.040
  8. Eljamal, O., Okawauchi, J. and Hiramatsu, K. (2012), "Removal of phospohorous from water using marble dust as sorbent material", J. Environ. Protect., 3(8). https://doi.org/10.4236/jep.2012.38084
  9. Eljamal O., Sasaki, K. and Hirajima, T. (2013), "Sorption kinetic of arsenate as water contaminant on zero valentiron", J. Water Resour. Protect., 5(6), 563-567. https://doi.org/ 10.4236/jwarp.2013.56057
  10. Gamze V., Ahmet D., Selin T., Elif, S. and Ebru, A. (2011), "Migration behavior of landfill leachate contaminants through alternative composite liners", Sci. Total Environ., 409(17), 3183-3196. https://doi.org/10.1016/j.scitotenv.2011.04.044
  11. Harari, I. and Hughes, T.J.R. (1994), "Stabilised finite element methods for steady advection-diffusion with production", Compos. Meth. Appl. Mech. Eng., 115(2), 165-191. https://doi.org/10.1016/0045-7825(94)90193-7
  12. Hsu (2004), "Flow and solute transport in strongly heterogeneous porous media", J. Hazard. Toxic Radioact. Waste, 8(3), 148-154. https://doi.org/10.1061/(ASCE)1090-025X(2004)8:3(148)
  13. Klotz, D., Seiler, K.P. and Moser, H. (1980), "Dispersivity and velocity relationship from laboratory and field experiments", J. Hydrol., 45(4), 169-184. https://doi.org/10.1016/0022-1694(80)90018-9
  14. Maamoun, I., Eljamal, O., Eljamal, R., Falyouna, O. and Sugihara, Y. (2020), "Promoting aqueous and transport characteristics of highly reactive nanoscale zero valent iron via different layered hydroxide coatings", Appl. Surf. Sci., 506, 145018. https://doi.org/10.1016/j. apsusc.2019.145018
  15. Maamoun, I., Falyouna, O., Eljamal, R., Bensaida, K. and Eljamal, O. (2021), "Optimization modelling of nFe0/Cu-PRB design for Cr(VI) removal from groundwater", Int. J. Environ. Sci. Develop., 12(3), 131-138. https://doi.org/10.18178/ijesd.2021.12.5.1330
  16. Mamoun, I., Bensaida, K., Eljamal, R., Falyouna, O., Tanaka, K., Tosco, T., Sugihara, Y. and Eljamal, O. (2022), "Rapid and efficient chromium (VI) removal from aqueous solutions using nickel hydroxide nanoplates (nHiHs)", J. Mole. Liq., 358, 119216. https://doi.org/10.1016/j.molliq.2022.119216
  17. Massimo, R., David, H., Gabriele, C. and Peter, K. (2012), "Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media", Transp. Porous Med., 93(3), 347-362. https://doi.org/10.1007/s11242-012-9953-8
  18. Patil, S.B. and Chore, H.S. (2014), "Contaminant transport through porous media: An overview of experimental and numerical studies", Adv. Environ. Res., 2(1), 45-69. https://doi.org/10.12989/aer.2014.3.1.045
  19. Patil, S.B. and Chore, H.S. (2015), "Transport of chloride through saturated soil column: An experimental study", Adv. Environ. Res., 4(2), 105-117. https://doi.org/10.12989/aer.2015.4.2.105
  20. Fox, P.J., Lee, J. and Lenhart, J.J. (2011), "Coupled consolidation and contaminant transport in compressible porous media", Int. J. Geomech., 11(2), 113-123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000035
  21. Prakash, A. (2000), "Analytical modelling of contaminant transport through vadose and saturated soil zones", J. Hydrol. Eng., 126(10), 773-777. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(773)
  22. Praveen Kumar, R. and Dodagoudar, G.R. (2008), "A 2-D contaminant transport model for unsaturated soils", Eng. Comput. Mech., 161(3), 129-138. https://doi.org/10.1680/eacm.2008.161.3.129
  23. Remesikova, M. (2007), "Numerical solution of two-dimensional convection-diffusion adsorption problems using an operator splitting scheme", Appl. Math. Comput., 184(1), 116-130. https://doi.org/10.1016/j.amc.2005.06.018
  24. Rowe, R.K. and Booker, J.R. (1985), "Two-dimensional pollutant migration in soils of finite depth", Canadian Geotech. J., 22(4), 429-436. https://doi.org/10.1139/t85-062
  25. Rowe, R.K. and Booker, J.R. (1986), "A finite layer technique for calculating three-dimensional pollutant migration in soil", Geotechnique, 36(2), 205-214. https://doi.org/10.1680/geot.1986.36.2.205
  26. Rowe, R.K. (1989), "Movement of pollutants through clayey soil", Proceedings of the 37th Annual Geotechnical Conference. Minnesota Section ASCE, Minnesota, U.S.A.
  27. Rowe, R.K. and Badv, K. (1996), "Chloride migration through clayey silt underlain by fine sand or silt", J. Geotech. Eng, ASCE, 122(1), 60-68. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:1(60)
  28. Rosqvist, H. and Destouni, G. (2000), "Solute transport through preferential pathways in municipal solid waste", J. Contam. Hydrol., 46(1), 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3
  29. Sharma, P.K., Sawant, V.A., Shukla, S.K. and Khan, Z. (2013), "Experimental and numerical simulation of contaminant transport through layered soil", Int. J. Geotech. Eng., 8(4), 345-351. https://doi.org/10.1179/1939787913Y.0000000014
  30. Sheu, T.W.H. and Chen (2002), "Finite element analysis of contaminant transport in groundwater", Appl. Math. Comput., 127(1), 23-43. https://doi.org/10.1016/S0096-3003(00)00160-0
  31. Srivastva, R., Sharma, P.K., Brusseau and M.L. (2002), "Spatial moments for reactive transport in heterogeneous porous media", J. Hydrol. Eng. 7(4), 336-341. https://doi.org/10.1061/(ASCE)1084-0699(2002)7:4(336)
  32. Starr, R.C., Gillham, R.W. and Sudicky, E.A. (2008), "Experimental investigation of solute transport in stratified porous media: The reactive case", Water Resour. Res., 21(7), 1043-1050. https://doi.org/10.1029/WR021i007p01043
  33. Swami, D., Sharma, P.K. and Ojha, C.S.P. (2013), "Experimental investigation of solute transport in stratified porous media", J. Hydraul. Eng., 19(3), 145-153. https://doi.org/10.1080/09715010.2013.793930
  34. Wang, Q., Bian, J., Wan, H. and Gu, T. (2019), "Non-Fickian transport of ammonia nitrogen in vadose zone: experiments and modeling", Arab. J. Geosci., 12(23), 711. https://doi.org/10.1007/s12517-019-4941-8
  35. Xu, T., Ye, Y., Zhang, Y. and Xie, Y. (2019), "Recent advances in experimental studies of steady-state dilution and reactive mixing in saturated porous media", Water, 11(3), 1-17. https://doi.org/10.3390/w11010003
  36. Zhang, Q., Yu, Y. and Cui, Y. (2020), "The role of particle size and molar ratio of Ca2+/Na+ in the retention and remobilization of colloids in saturated porous media", Arab J. Geosci., 13, 273. https://doi.org/10.1007/s12517-020-5220-4