Acknowledgement
This research was funded by the "Korea Institute of Civil Engineering and Building Technology, grant number 20230132-001" and "Korea Institute of Marine Science & Technology Promotion (KIMST), grant number 2016-0065".
References
- Ashford, S.A. and Sitar, N. (2002), "Simplified method for evaluating seismic stability of steep slopes", J. Geotech. Geoenviron. Eng., 128(2), 119-128. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:2(119).
- Cihan, K. and Yuksel, Y. (2011), "Deformation of rubble-mound breakwaters under cyclic loads", Coast. Eng., 58(6), 528-539. https://doi.org/10.1016/j.coastaleng.2011.02.002.
- Cihan, K., Yuksel, Y., Berilgen, M. and Cevik, E.O. (2012), "Behavior of homogenous rubble mound breakwaters materials under cyclic loads", Soil Dyn. Earthq. Eng., 34(1), 1-10. https://doi.org/10.1016/j.soildyn.2011.10.009.
- Haigh, S.K. and Gopal Madabhushi, S.P. (2011), "Centrifuge modelling of pile-soil interaction in liquefiable slopes", Geomech. Eng., 3(1), 1-16. https://doi.org/10.12989/gae.2011.3.1.001.
- Heidary-Torkamani, H., Bargi, K., Amirabadi, R. and McCllough, N. J. (2014), "Fragility estimation and sensitivity analysis of an idealized pile-supported wharf with batter piles", Soil Dyn. Earthq. Eng., 61, 92-106. http://doi.org/10.1016/j.soildyn.2014.01.024.
- Kim, D.S., Kim, N.R., Choo, Y.W. and Cho, G.C. (2013), "A newly developed state-of-the-art geotechnical centrifuge in Korea", KSCE J. Civil Eng., 17(1), 77-84. http://doi.org/10.1007/s12205-013-1350-5.
- Kim, Y.S. and Choi, J.I. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.
- Ko, K.W., Park, H.J., Ha, J.G., Jin, S., Song, Y.H., Song, M.J. and Kim, D.S. (2019), "Evaluation of dynamic bending moment of disconnected piled raft via centrifuge tests", Can. Geotech. J., 56(12), 1917-1928. http://doi.org/10.1139/cgj-2018-0248.
- Kwon, S.Y. and Yoo, M. (2019), "Evaluation of dynamic soil-pile-structure interactive behavior in dry sand by 3D numerical simulation", Appl. Sci., 9(13), 2612. https://doi.org/10.3390/app9132612.
- Kwon, S.Y. and Yoo, M. (2020). "Study on the dynamic soil-pile-structure interactive behavior in liquefiable sand by 3D numerical simulation", Appl. Sci., 10(8), 2723. https://doi.org/10.3390/app10082723.
- Lee, S.H., Choo, Y.W. and Kim, D.S. (2013), "Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests", Soil Dyn. Earthq. Eng., 44, 102-114. http://doi.org/10.1016/j.soildyn.2012.09.008.
- Lees, A.S. and Richards, D.J. (2011), "Centrifuge modelling of temporary roadway systems subject to rolling type loading", Geomech. Eng., 3(1), 45-59. https://doi.org/10.12989/gae.2011.3.1.045.
- McCullough, N.J., Dickenson, S.E., Schlechter, S.M. and Boland, J.C. (2007), "Centrifuge seismic modeling of pile-supported wharves", Geotech. Test. J., 30(5), 349-359. https://doi.org/10.1520/GTJ14066.
- Memos, C., Bouckovalas, G. and Tsiachris, A. (2001), "Stability of rubble-mound breakwaters under seismic action", In Coast. Eng., 2000, 1585-1598. https://doi.org/10.1061/40549(276)123
- MOF (Ministry of Oceans and Fisheries) (2017), Design standards of harbour and port. Sejong, Korea: Ministry of Oceans and Fisheries (in Korean).
- MOIS (Ministry of the Interior and Safety) (2017), Announcement of common application of seismic design criteria. Sejong, Korea: Ministry of the Interior and Safety (in Korean).
- Najma, A. and Ghalandarzadeh, A. (2019), "Experimental study on the seismic behavior of composite breakwaters located on liquefiable seabed", Ocean Eng., 186, 106127. https://doi.org/10.1016/j.oceaneng.2019.106127.
- Ovesen, N.K. (1979), "The scaling law relationship-panel discussion", Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering.
- PIANC (Permanent International Association for Navigation Congresses) (2001), Seismic design guidelines for port structures. Rotterdam, Netherlands: International Navigation Association.
- Su, L., Lu, J., Elgamal, A. and Arulmoli, A.K. (2017), "Seismic performance of a pile-supported wharf: Three-dimensional finite element simulation.", Soil Dyn. Earthq. Eng., 95, 167-179. https://doi.org/10.1016/j.soildyn.2017.01.009.
- Takahashi, A. and Takemura, J. (2005), "Liquefaction-induced large displacement of pile-supported wharf", Soil Dyn. Earthq. Eng., 25(11), 811-825. https://doi.org/10.1016/j.soildyn.2005.04.010.
- Tokimatsu, K., Suzuki, H. and Sato, M. (2005), "Effects of inertial and kinematic interaction on seismic behavior of pile with embedded foundation", Soil Dyn. Earthq. Eng., 25(7-10), 753-762. https://doi.org/10.1016/j.soildyn.2004.11.018.
- Tran, N.X., Bong, T. and Kim, S.R. (2022), "Kinematic and inertial interaction of single and group piles in slope by displacement phase relation", J. Earthq. Eng., 26(7), 3639-3659. https://doi.org/10.1080/13632469.2020.1813661.
- Vytiniotis, A., Panagiotidou, A.I. and Whittle, A.J. (2019), "Analysis of seismic damage mitigation for a pile-supported wharf structure", Soil Dyn. Earthq. Eng., 119, 21-35. https://doi.org /10.1016/j.soildyn.2018.12.020.
- Ye, J. and Wang, G. (2015), "Seismic dynamics of offshore breakwater on liquefiable seabed foundation", Soil Dyn. Earthq. Eng., 76, 86-99. https://doi.org/10.1016/j.soildyn.2015.02.003.
- Ye, J.H. and Jeng, D.S. (2013), "Three-dimensional dynamic transient response of a poro-elastic unsaturated seabed and a rubble mound breakwater due to seismic loading", Soil Dyn. Earthq. Eng., 44, 14-26. https://doi.org/10.1016/j.soildyn.2012.08.011.
- Yoo, M.T., Cha, S.H., Kim, M.M., Choi, J.I. and Han, J.T. (2012). "Evaluation of dynamic group-pile effect in dry sand by centrifuge model tests", Int. J. Offshore Polar Eng., 22(2).
- Yoo, M.T., Choi, J.I., Han, J.T. and Kim, M.M. (2013). "Dynamic py curves for dry sand from centrifuge tests", J. Earthq. Eng., 17(7), 1082-1102. https://doi.org/10.1080/13632469.2013.801377.
- Yoo, M.T., Han, J.T., Choi, J.I. and Kwon, S.Y. (2017), "Development of predicting method for dynamic pile behavior by using centrifuge tests considering the kinematic load effect", Bull. Earthq. Eng., 15(3), 967-989. https://doi.org/10.1007/s10518-016-9998-0.
- Yun, J.W. and Han, J.T. (2021), "Evaluation of soil spring methods for response spectrum analysis of pile-supported structures via dynamic centrifuge tests", Soil Dyn. Earthq. Eng., 141, 106537. https://doi.org/10.1016/j.soildyn.2020.106537.
- Yun, J.W., Han, J.T. and Kwan, J. (2022a), "Evaluation of the virtual fixed-point method for seismic design of pile-supported structures", KSCE J. Civil Eng., 26(2), 596-605. https://doi.org/10.1007/s12205-021-0422-1.
- Yun, J.W., Han, J.T. and Kim, D.Y (2022b), "Evaluation of seismic p-yp loops of pile-supported structures installed in saturated sand", Geomech. Eng., 30(6), 579-586. https://doi.org/10.12989/gae.2022.30.6.579.
- Yun, J.W., Han, J.T. and Kim, S.R. (2019), "Evaluation of virtual fixed points in the response spectrum analysis of a pile-supported wharf", Geotechnique Lett., 9(3), 238-244. https://doi.org/10.1680/jgele.19.00013.