DOI QR코드

DOI QR Code

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • 투고 : 2022.10.28
  • 심사 : 2023.03.20
  • 발행 : 2023.05.25

초록

The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

키워드

참고문헌

  1. Bertrand, D., Nicot, F., Gotteland, P. and Lambert, S. (2005), "Modelling a geo-composite cell using discrete analysis", Comput. Geotech., 32(8), 564-577. https://doi.org/10.1016/j.compgeo.2005.11.004.
  2. Bourrier, F., Lambert, S., Heymann, A. and Gotteland, P. (2010), "Evaluation of the efficiency of a model of rockfall protection structures based on real-scale experiments", Numer. Method. Geotech. Eng., 441-446.
  3. Burroughs, D.K., Henson, H.H. and Jiang, S.S. (1993), "Full scale geotextile rock barrier embankment testing, analysis and prediction". Proceedings of the Geosynthetics, Vancouver, Canada.
  4. Calvetti, F. (1998), "Distinct element evaluation of the rock-fall design load for shelters", Geotecnica, 32, 63-83.
  5. Cantarelli, G., Giani, G.P., Gottardi, G. and Govoni, L. (2008), "Modelling rockfall protection fences", In the first world landslide forum.
  6. Cazzani, A., Mongiovi, L. and Frenez, T. (2002), "Dynamic finite element analysis of interceptive devices for falling rocks", Int. J. Rock Mech. Min. Sci., 39(3), 303-321. https://doi.org/10.1016/S1365-1609(02)00037-0.
  7. Crosta, G.B. and Agliardi, F. (2004), "Parametric evaluation of 3D dispersion of rockfall trajectories", Nat. Hazard. Earth Sys., 4(4), 583-598. https://doi.org/10.5194/nhess-4-583-2004.
  8. Cundall, P.A. (1971), "A computer model for simulating progressive, large-scale movement in blocky rock system", Proceedings of the international symposium on rock mechanics, Nancy, France.
  9. Del Greco, O., Fornaro, M. and Oggeri, C. (1994), "Modification of a quarry face: Stabilisation criteria and environmental reclamation", Proceedings of the 7th international congress IAEG, Lisboa, Portugal.
  10. Descourdes, F. (1997), "Rockfall", Publications of the Swiss Association for Soiland Rock Mechanics, 135.
  11. Effeindzourou, A., Thoeni, K., Giacomini, A. and Wendeler, C. (2017), "Efficient discrete modelling of composite structures for rockfall protection", Comput. Geotech., 87, 99-114. https://doi.org/10.1016/j.compgeo.2017.02.005.
  12. Faisal Haji, A. (1993), "Field behaviour of a geogrid-reinforced slope", Geotext. Geomembranes, 12(1), 53-72. https://doi.org/10.1016/0266-1144(93)90036-N.
  13. Kar, A.K. (1978), "Projectile penetration into buried structures", J. Struct. Division, 104(1), 125-139. https://doi.org/10.1061/JSDEAG.0004814.
  14. Kister, B. and Fontana, O. (2011), "On the evaluation of rockfall parameters and the design of protection embankments-a case study", Proceeding of the Interdisciplinary Workshop on Rockfall Protection-Rocexs, Innsbruck, Austria.
  15. Labiouse, V., Descoeudres, F. and Montani, S. (1996), "Experimental study of rock sheds impacted by rock blocks", Struct. Eng. Int., 6(3), 171-176. https://doi.org/10.2749/101686696780495536.
  16. Lambert, S. and Bourrier, F. (2013), "Design of rockfall protection embankments: a review", Eng. Geol., 154, 77-88. https://doi.org/10.1016/j.enggeo.2012.12.012.
  17. Lambert, S., Gotteland, P. and Nicot, F. (2009), "Experimental study of the impact response of geo-cells as components of rockfall protection embankments", Nat. Hazard. Earth Sys., 9(2), 459-467. https://doi.org/10.5194/nhess-9-459-2009.
  18. Lambert, S. and Kister, B. (2017), "Analysis of existing rockfall embankments of Switzerland (AERES) Part A: State of knowledge", Technical report, 55.
  19. Lazzari, A., Troisi, C. and Arcuri, G. (1996), "Protezione di nuclei abitati contro la caduta di massi mediante rilevati in terra rinforzata: esperienze della Regione Piemonte", Proceedings of the Giornata di Studio su La protezione contro la caduta di massi dai versanti rocciosi, Torino, Italy.
  20. Maegawa, K., Tajima, T., Yokota, T. and Tohda, M. (2011), "Experiments on rockfall protection embankments with geogrids and cushions", Int. J. Geomate, 1, 19-24. https://doi.org/10.21660/2011.1e.
  21. Mayne, P.W., Jones Jr,J. S. and Dumas, J.C. (1984), "Ground response to dynamic compaction", J. Geotech. Eng., 110(6), 757-774. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(757).
  22. Meng, Q., Xue, H., Song, H., Zhuang, X. and Rabczuk, T. (2023), "Rigid-block DEM modeling of mesoscale fracture behavior of concrete with random aggregates", J. Eng. Mech., 149(2), 04022114. https://doi.org/10.1061/JENMDT.EMENG-6784.
  23. Moradi, G., Abdolmaleki, A., Soltani, P. and Ahmadvand, M. (2018), "A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes", Geomech. Eng., 14(4), 345-354. https://doi.org/10.12989/gae.2018.14.4.345.
  24. Moradi, G., Abdolmaleki, A. and Soltani, P. (2019), "Small-and large-scale analysis of bearing capacity and load-settlement behavior of rock-soil slopes reinforced with geogrid-box method", Geomech. Eng., 18(3), 315-328. https://doi.org/10.12989/gae.2019.18.3.315.
  25. Oggeri, C., Peila, D. and Recalcati, P. (2004), "Rilevati paramassi", Proceedings of the Convegno Bonifica di versanti rocciosi per la protezione del territorio, Trento, Italy.
  26. Ouyang, C., Liu, Y., Wang, D. and He, S. (2019), "Dynamic analysis of rockfall impacts on geogrid reinforced soil and EPS absorption cushions", KSCE J. Civil Eng., 23(1), 37-45. https://doi.org/10.1007/s12205-018-0704-4.
  27. Paronuzzi, P. (1989), "Criteri di progettazione di rilevati paramassi", Geologia tecnica, 1, 23-41.
  28. Pasqualotto, M., Hugonin, B. and Vagliasindi, B. (2005), "Rilevati in terra rinforzata a protezione dalla caduta massi in Val di Rhemes (AO)", Geoingegneria Ambientale e Mineraria, 114(1), 55-67.
  29. Pasqualotto, M., Peila, D. and Oggeri, C. (2004), "Prestazioni di un sistema di rilevati a scogliera soggetti and impatto di massi", Proceedings of the Convegno Bonifica di versanti rocciosi per la protezione del territorio, Trento, Italy.
  30. Peckover, F.L. and Kerr, J.W.G. (1977), "Treatment and maintenance of rock slopes on transportation routes", Can. Geotech. J., 14(4), 487-507. https://doi.org/10.1139/t77-051
  31. Peila, D., Castiglia, C., Oggeri, C., Guasti, G., Recalcati, P. and Rimoldi, P. (2002), "Testing and modelling geogrid reinforced soil embankments subject to high energy rock impacts", Proceedings of the 7th International conference on geosynthetics.
  32. Peila, D., Oggeri, C. and Baratono, P. (2006), "Barriere paramassi a rete: interventi e dimensionamento", GEAM.
  33. Peila, D., Oggeri, C. and Castiglia, C. (2007), "Ground reinforced embankments for rockfall protection: design and evaluation of full scale tests", Landslides, 4(3), 255-265. https://doi.org/10.1007/s10346-007-0081-4.
  34. Peila, D., Pelizza, S. and Sassudelli, F. (1998), "Evaluation of behaviour of rockfall restraining nets by full scale tests", Rock Mech. Rock Eng., 31(1), 1-24. https://doi.org/10.1007/s006030050006.
  35. Peila, D. and Ronco, C. (2009), "Design of rockfall net fences and the new ETAG 027 European guideline", Nat. Hazard. Earth Sys., 9(4), 1291-1298. https://doi.org/10.5194/nhess-9-1291-2009.
  36. Pichler, B., Hellmich, C. and Mang, H.A. (2005), "Impact of rocks onto gravel design and evaluation of experiments", Int. J. Impact Eng., 31(5), 559-578. https://doi.org/10.1016/j.ijimpeng.2004.01.007.
  37. Plassiard, J.P., Donze, F.V. and Plotto, P. (2005), "High energy impact on embankments: a numerical discrete approach", Discrete Element Group for Risk Mitigation. https://doi.org/10.1201/9781439833780.ch86.
  38. Plassiard, J.P. and Donze, F.V. (2009), "Rockfall impact parameters on embankments: A discrete element method analysis", Struct. Eng. Int., 19(3), 333-341. https://doi.org/10.2749/101686609788957874.
  39. Plassiard, J.P. and Donze, F.V. (2010), "Optimizing the design of rockfall embankments with a discrete element method", Eng. Struct., 32(11), 3817-3826. https://doi.org/10.1016/j.engstruct.2010.08.025.
  40. Pol, A. and Gabrieli, F. (2021), "Discrete element simulation of wire-mesh retaining systems: An insight into the mechanical behavior", Comput. Geotech., 134, 104076. https://doi.org/10.1016/j.compgeo.2021.104076.
  41. Ronco, C., Oggeri, C. and Peila, D. (2009), "Design of reinforced ground embankments used for rockfall protection", Nat. Hazard. Earth Sys., 9(4), 1189-1199. https://doi.org/10.5194/nhess-9-1189-2009.
  42. Simmons, M., Pollak, S. and Peirone, B. (2009), "High energy rock fall embankment constructed using a freestanding woven wire mesh reinforced soil structure", Proceedings of the 60th Highway Geology Symposium, Buffalo, New York.
  43. Smilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A. and Thoeni, K. (2010), "Yade reference documentation", Yade Documentation, 474(1). http://yadedem.org/doc/.
  44. Tissieres, P. (1999), "Ditches and reinforced ditches against falling rocks", Proceedings of the Joint Japan-Swiss Scientific Seminar on Impact load by rock fall and design of protection structures, Kanazawa, Japan, 4-7.
  45. Tran, V.D.H., Meguid, M.A. and Chouinard, L.E. (2015), "Threedimensional analysis of geogrid-reinforced soil using a finitediscrete element framework", Int. J. Geomech., 15(4), 04014066. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000410.
  46. Volkwein, A. (2005), "Numerical simulation of flexible rockfall protection systems", Comput. Civil Eng., 1-11. https://doi.org/10.1061/40794(179)122.
  47. Watanabe, T., Masuya, H., Satoh, A. and Nakamura, S. (2011), "Analysis of impact response of sand cushion for rockfall by distinct element method", Appl. Mech. Mater., 82, 92-99. https://doi.org/10.4028/www.scientific.net/AMM.82.92.
  48. Wyllie, D.C. and Norrish, N.I. (1996), "Stabilization of rock slopes", Landslides Investigations and Mitigation, 247, 474-506.
  49. Yan, J., Chen, J., Tan, C., Zhang, Y., Liu, Y., Zhao, X. and Wang, Q. (2023), "Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses", Eng. Geol., 313, 106993. https://doi.org/10.1016/j.enggeo.2023.106993.
  50. Yoshida, H. (1999), "Recent experimental studies on rockfall control in Japan", Proceedings of the Joint Japan-Swiss Scientific Seminar on Impact load by rock fall and design of protection structures, Kanazawa, Japan.
  51. Zhu, C., He, M.C., Karakus, M., Zhang, X.H. and Guo, Z. (2021), "The collision experiment between rolling stones of different shapes and protective cushion in open-pit mines", J. Mountain Sci., 18(5), 1391-1403. https://doi.org/10.1007/s11629-020-6380-0.
  52. Zhu, C., He, M., Tao, Z., Meng, Q. and Zhang, X. (2021), "Recognition and prevention of rockfall vulnerable area in open-pit mines based on slope stability analysis", Geomech. Eng., 26(5), 441-452. https://doi.org/10.12989/gae.2021.26.5.441.
  53. Zhu, C., He, M., Yin, Q., and Zhang, X. (2021), "Numerical simulation of rockfalls colliding with a gravel cushion with varying thicknesses and particle sizes", Geomech. Geophysics for Geo-Energy and Geo-Resources, 7(11), 1-15. https://doi.org/10.1007/s40948-020-00203-8.
  54. Zhu, C., Wang, D., Xia, X., Tao, Z., He, M. and Cao, C. (2018), "The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts", Nat. Hazard. Earth Sys., 18(6), 1811-1823. https://doi.org/10.5194/nhess-18-1811-2018.
  55. Zhu, Z.H., Yin, J.H., Qin, J.Q. and Tan, D.Y. (2019), "A new discrete element model for simulating a flexible ring net barrier under rockfall impact comparing with large-scale physical model test data", Comput. Geotech., 116, 103208. https://doi.org/10.1016/j.compgeo.2019.103208.