DOI QR코드

DOI QR Code

Covariance patterns between ramus morphology and the rest of the face: A geometric morphometric study

  • Marietta Krusi (Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich) ;
  • Demetrios J. Halazonetis (Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens) ;
  • Theodore Eliades (Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich) ;
  • Vasiliki Koretsi (Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich)
  • Received : 2022.09.27
  • Accepted : 2023.03.09
  • Published : 2023.05.25

Abstract

Objective: The growth and development of the mandible strongly depend on modeling changes occurring at its ramus. Here, we investigated covariance patterns between the morphology of the ramus and the rest of the face. Methods: Lateral cephalograms of 159 adults (55 males and 104 females) with no history of orthodontic treatment were collected. Geometric morphometrics with sliding semi-landmarks was used. The covariance between the ramus and face was investigated using a two-block partial least squares analysis (PLS). Sexual dimorphism and allometry were also assessed. Results: Differences in the divergence of the face and anteroposterior relationship of the jaws accounted for 24.1% and 21.6% of shape variation in the sample, respectively. Shape variation was greater in the sagittal plane for males than for females (30.7% vs. 17.4%), whereas variation in the vertical plane was similar for both sexes (23.7% for males and 25.4% for females). Size-related allometric differences between the sexes accounted for the shape variation to a maximum of 6% regarding the face. Regarding the covariation between the shapes of the ramus and the rest of the face, wider and shorter rami were associated with a decreased lower anterior facial height as well as a prognathic mandible and maxilla (PLS 1, 45.5% of the covariance). Additionally, a more posteriorly inclined ramus in the lower region was correlated with a Class II pattern and flat mandibular plane. Conclusions: The width, height, and inclination of the ramus were correlated with facial shape changes in the vertical and sagittal planes.

Keywords

Acknowledgement

DJH was funded by the FLAG-ERA grant (JTC 2019 project MARGO) and the Greek General Secretariat for Research and Technology (GSRT) grant number T11ERA4-00017.

References

  1. Charles SW. The temporomandibular joint and its influence on the growth of the mandible. Br Dent J 1925;46:845-55. https://cir.nii.ac.jp/crid/1573950400256289024
  2. Brodie AG. On the growth pattern of the human head. From the third month to the eighth year of life. Am J Anat 1941;68:209-62. https://doi.org/10.1002/aja.1000680204
  3. Sicher H. The growth of the mandible. Am J Orthod 1947;33:30-5. https://doi.org/10.1016/0096-6347(47)90259-7
  4. Moss ML. Functional analysis of human mandibular growth. J Prosthet Dent. 1960;10:1149-59. https://doi.org/10.1016/0022-3913(60)90228-6
  5. Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am J Orthod 1969;55:566-77. https://doi.org/10.1016/0002-9416(69)90034-7
  6. Humphry GM. On the growth of the jaws. Cambridge: Cambridge University; 1864. https://books.google.co.kr/books/about/On_the_Growth_of_the_Jaws.html?id=iy0lzQEACAAJ&redir_esc=y
  7. Brash JC. Growth of the Jaws and Palate. In: The growth of the jaws, normal and abnormal, in health and disease: five lectures. London: Dental Board of the United Kingdom; 1924. p. 23-66. https://books.google.co.kr/books/about/The_Growth_of_the_Jaws_Normal_and_Abnorm.html?id=Z5QPzQEACAAJ&redir_esc=y
  8. Enlow DH, Harris DB. A study of the postnatal growth of the human mandible. Am J Orthod 1964;50:25-50. https://doi.org/10.1016/S0002-9416(64)80016-6
  9. Bang S, Enlow DH. Postnatal growth of the rabbit mandible. Arch Oral Biol 1967;12:993-8. https://doi.org/10.1016/0003-9969(67)90094-5
  10. Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics. St. Louis: Mosby Elsevier; 2007. https://www.worldcat.org/ko/title/contemporary-orthodontics/oclc/769189433
  11. Enlow DH, Hans MG. Essentials of facial growth. Philadelphia: Saunders; 1996. https://www.amazon.com/Essentials-Facial-Growth-Donald-Enlow/dp/0721661068
  12. Moyers RE, Bookstein FL. The inappropriateness of conventional cephalometrics. Am J Orthod 1979;75:599-617. https://doi.org/10.1016/0002-9416(79)90093-9
  13. McIntyre GT, Mossey PA. Size and shape measurement in contemporary cephalometrics. Eur J Orthod 2003;25:231-42. https://doi.org/10.1093/ejo/25.3.231
  14. Gunz P, Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix It J Mamm 2013;24:103-9. https://doi.org/10.4404/hystrix-24.1-6292
  15. Halazonetis DJ. Morphometrics for cephalometric diagnosis. Am J Orthod Dentofacial Orthop 2004;125:571-81. https://doi.org/10.1016/j.ajodo.2003.05.013
  16. Enlow DH. JCO/interviews Dr. Donald H. Enlow on craniofacial growth. J Clin Orthod 1983;17:669-79. https://pubmed.ncbi.nlm.nih.gov/6586731/
  17. Klingenberg CP. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evol Dev 2009;11:405-21. https://doi.org/10.1111/j.1525-142X.2009.00347.x
  18. Fruciano C, Franchini P, Meyer A. Resampling-based approaches to study variation in morphological modularity. PLoS One 2013;8:e69376. https://doi.org/10.1371/journal.pone.0069376
  19. Halazonetis DJ. At what resolution should I scan cephalometric radiographs? Am J Orthod Dentofacial Orthop 2004;125:118-9. https://doi.org/10.1016/j.ajodo.2003.11.004
  20. Bookstein FL. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press; 1991. https://doi.org/10.1017/CBO9780511573064
  21. Klingenberg CP, Monteiro LR. Distances and directions in multidimensional shape spaces: implications for morphometric applications. Syst Biol 2005;54:678-88. https://doi.org/10.1080/10635150590947258
  22. Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 2011;11:353-7. https://doi.org/10.1111/j.1755-0998.2010.02924.x
  23. Veleminska J, Bigoni L, Krajicek V, Borsky J, Smahelova D, Caganova V, et al. Surface facial modelling and allometry in relation to sexual dimorphism. Homo 2012;63:81-93. https://doi.org/10.1016/j.jchb.2012.02.002
  24. Klingenberg CP. Size, shape, and form: concepts of allometry in geometric morphometrics. Dev Genes Evol 2016;226:113-37. https://doi.org/10.1007/s00427-016-0539-2
  25. Rohlf FJ, Corti M. Use of two-block partial least-squares to study covariation in shape. Syst Biol 2000;49:740-53. https://doi.org/10.1080/106351500750049806
  26. Gkantidis N, Halazonetis DJ. Morphological integration between the cranial base and the face in children and adults. J Anat 2011;218:426-38. https://doi.org/10.1111/j.1469-7580.2011.01346.x
  27. Wellens HL, Kuijpers-Jagtman AM, Halazonetis DJ. Geometric morphometric analysis of craniofacial variation, ontogeny and modularity in a cross-sectional sample of modern humans. J Anat 2013;222:397-409. https://doi.org/10.1111/joa.12027
  28. Katsadouris A, Halazonetis DJ. Geometric morphometric analysis of craniofacial growth between the ages of 12 and 14 in normal humans. Eur J Orthod 2017;39:386-94. https://doi.org/10.1093/ejo/cjw070
  29. Zollikofer CP, Ponce De Leon MS. Visualizing patterns of craniofacial shape variation in Homo sapiens. Proc Biol Sci 2002;269:801-7. https://doi.org/10.1098/rspb.2002.1960
  30. Bastir M, Rosas A. Facial heights: evolutionary relevance of postnatal ontogeny for facial orientation and skull morphology in humans and chimpanzees. J Hum Evol 2004;47:359-81. https://doi.org/10.1016/j.jhevol.2004.08.009
  31. Nielsen IL. Vertical malocclusions: etiology, development, diagnosis and some aspects of treatment. Angle Orthod 1991;61:247-60. https://pubmed.ncbi.nlm.nih.gov/1763835/ Erratum in: Angle Orthod 1992;62:87.
  32. Manlove AE, Romeo G, Venugopalan SR. Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin North Am 2020;32:167-75. https://doi.org/10.1016/j.coms.2020.01.007
  33. Enlow DH, Pfister C, Richardson E, Kuroda T. An analysis of Black and Caucasian craniofacial patterns. Angle Orthod 1982;52:279-87. https://pubmed.ncbi.nlm.nih.gov/6961829/
  34. Bastir M, Rosas A, Kuroe K. Petrosal orientation and mandibular ramus breadth: evidence for an integrated petroso-mandibular developmental unit. Am J Phys Anthropol 2004;123:340-50. https://doi.org/10.1002/ajpa.10313
  35. Smith RJ, Josell SD. The plan of the human face: a test of three general concepts. Am J Orthod 1984;85:103-8. https://doi.org/10.1016/0002-9416(84)90001-0
  36. Bastir M, Rosas A. Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 2005;128:26-34. https://doi.org/10.1002/ajpa.20191
  37. Mehta S, Arqub SA, Sharma R, Patel N, Tadinada A, Upadhyay M, et al. Variability associated with mandibular ramus area thickness and depth in subjects with different growth patterns, gender, and growth status. Am J Orthod Dentofacial Orthop 2022;161:e223-34. https://doi.org/10.1016/j.ajodo.2021.10.006
  38. Knigge RP, McNulty KP, Oh H, Hardin AM, Leary EV, Duren DL, et al. Geometric morphometric analysis of growth patterns among facial types. Am J Orthod Dentofacial Orthop 2021;160:430-41. https://doi.org/10.1016/j.ajodo.2020.04.038
  39. Aki T, Nanda RS, Currier GF, Nanda SK. Assessment of symphysis morphology as a predictor of the direction of mandibular growth. Am J Orthod Dentofacial Orthop 1994;106:60-9. https://doi.org/10.1016/S0889-5406(94)70022-2
  40. Alarcon JA, Bastir M, Garcia-Espona I, MenendezNunez M, Rosas A. Morphological integration of mandible and cranium: orthodontic implications. Arch Oral Biol 2014;59:22-9. https://doi.org/10.1016/j.archoralbio.2013.10.005
  41. Enlow DH, DiGangi D, McNamara JA Jr, Mina M. An evaluation of the morphogenic and anatomic effects of the functional regulator utilizing the counterpart analysis. Eur J Orthod 1988;10:192-202. https://doi.org/10.1093/ejo/10.3.192
  42. Fan Y, Penington A, Kilpatrick N, Hardiman R, Schneider P, Clement J, et al. Quantification of mandibular sexual dimorphism during adolescence. J Anat 2019;234:709-17. https://doi.org/10.1111/joa.12949
  43. Sharma M, Gorea RK, Gorea A, Abuderman A. A morphometric study of the human mandible in the Indian population for sex determination. Egypt J Forensic Sci 2016;6:165-9. https://doi.org/10.1016/j.ejfs.2015.01.002