DOI QR코드

DOI QR Code

Evaluation of Bond Strength of Deformed Bars in Pull-out Specimens Depending on Stirrups Spacing, Rebar diameter and Corrosion Rate

스터럽간격, 철근직경 및 부식률에 따른 인발 실험체의 부착강도 평가

  • 지성우 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 정호성 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 윤차영 (서울시립대학교 건축공학과 스마트시티융합전공) ;
  • 이재연 (목원대학교 건축학부) ;
  • 김강수 (서울시립대학교 건축학부 스마트시티융합전공)
  • Received : 2023.03.27
  • Accepted : 2023.06.08
  • Published : 2023.06.30

Abstract

In this study, pull-out tests were performed to investigate the effects of stirrup spacing, rebar diameter, and corrosion rate on bond strength of deformed bars in reinforced concrete. Twelve pull-out specimens with different stirrup spacing, rebar diameter, and corrosion rate were prepared following the RILEM RC6 guidelines. The test results showed that the bond strength of specimens with stirrups increased when the corrosion rate was less than 3%, whereas it decreased when the corrosion rate was more than 3%. On the other hand, the bond strength of specimens without stirrups decreased as the corrosion rate increased. The effect of rebar diameter was less significant compared to those of stirrup spacing and corrosion rate. A bond strength model for pull-out specimens was proposed considering stirrup ratio and corrosion rate, and the model showed the lowest error among the previous models.

본 연구에서는 스터럽 간격, 철근 직경 및 부식률이 이형철근의 부착강도에 미치는 영향을 파악하고자 인발실험이 수행되었다. 스터럽 간격, 철근 직경 및 부식률이 상이한 12개의 인발 실험체를 RILEM RC 6 기준에 따라 제작하였다. 스터럽이 보강된 실험체에 대하여, 부식률이 3% 미만인 경우에는 부착강도가 증가하였으나, 부식률이 3%를 초과한 경우에는 부착강도가 감소하였다. 반면, 스터럽이 보강되지 않은 실험체에 대해서는, 부식률이 증가함에 따라 부착강도가 감소하였다. 스터럽 간격 및 부식률 대비, 철근 직경이 부착강도에 미치는 영향은 적은 것으로 나타났다. 이에 따라 스터럽 비율 및 부식률을 변수로 사용하는 인발실험체의 부착강도 회귀모형이 제시되었으며, 제안모델은 선행 모델들에 비해 낮은 오차를 나타내었다.

Keywords

Acknowledgement

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(NRF-2021R1I1A3049928).

References

  1. Williamson, S. J., and Clark, L. A. (2002). Effect of corrosion and load on reinforcement bond strength. Structural Engineering International, 12(2), 117-122. https://doi.org/10.2749/101686602777965559
  2. Bhaskar, S., Bharatkumar, B. H., Gettu, R., and Neelamegam, M. (2010). Effect of corrosion on the bond behaviour of OPC and PPC concretes. J Struct Eng, 37, 37-42.
  3. Yu, H., Lee, B., Kim, K., and Ahn, T. (1998), A study on the Relationship between Degree of Rust Condition and Bond Strength in Reinforced Concrete Members, Proceedings of the Korea Concrete Institute Conference, 10(1), 621-626. (in Korean)
  4. Auyeung, Y., Balaguru, P., and Chung, L. (2000). Bond behavior of corroded reinforcement bars. ACI Materials Journal, 97(2), 214-220.
  5. Yalciner, H., Eren, O., and Sensoy, S. (2012). An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cement and Concrete Research, 42(5), 643-655. https://doi.org/10.1016/j.cemconres.2012.01.003
  6. Tondolo, F. (2015). Bond behaviour with reinforcement corrosion. Construction and Building Materials, 93, 926-932. https://doi.org/10.1016/j.conbuildmat.2015.05.067
  7. Zhang, B., Zhu, H., Chen, J., and Yang, O. (2020). Influence of specimen dimensions and reinforcement corrosion on bond performance of steel bars in concrete. Advances in Structural Engineering, 23(9), 1759-1771. https://doi.org/10.1177/1369433219900682
  8. Harajli, M. H., Hout, M., and Jalkh, W. (1995). Local bond stress-slip behavior of reinforcing bars embedded in plain and fiber concrete. ACI Materials Journal, 92(4), 343-353..
  9. Cabrera, J. G. (1996). Deterioration of concrete due to reinforcement steel corrosion. Cement and Concrete Composites, 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7
  10. Lee, H. S., Noguchi, T., and Tomosawa, F. (2002). Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cement and Concrete Research, 32(8), 1313-1318. https://doi.org/10.1016/S0008-8846(02)00783-4
  11. Chung, L., Kim, J. H. J., and Yi, S. T. (2008). Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars. Cement and Concrete Composites, 30(7), 603-611. https://doi.org/10.1016/j.cemconcomp.2008.03.006
  12. Hadi, M. N. (2008). Bond of high strength concrete with high strength reinforcing steel.
  13. Orangun, C. O., Jirsa, J. O., and Breen, J. E. (1977). A reevaulation of test data on development length and splices. ACI Journal Proceedings, 74(3), 114-122.
  14. Xu, Y. (1990). Experimental study of anchorage properties for deformed bars in concrete. Beijing, Tsinghua.
  15. Stanish, K. D., Hooton, R. D., and Pantazopoulou, S. J. (1999). Corrosion Effects on Bond Strength in Reinforced Concrete. ACI Structural Journal, 96(6), 915-921.
  16. ACI Committee 408. (2003). Bond and Development of Straight Reinforcing Bars in Tension (ACI 408R-03), American Concrete Institute, 2003, pp. 771-782
  17. Esfahani, M. R., and Kianoush, M. R. (2005). Development/splice length of reinforcing bars. ACI Structural Journal, 102(1), 22.
  18. Comite Euro-International Du Beton (CEB). CEB-FIP Model Code 2010 for Concrete Structures; Comite Euro-International Du Beton(CEB): Lausanne, Switzerland, 2010.
  19. Wu, Y.-F., and Zhao, X.-M. (2013). Unifed bond stress-slip model for reinforced concrete. Journal of Structural Engineering, 139(11), 1951-1962. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000747
  20. Fang, C., Lundgren, K., Chen, L., and Zhu, C. (2004). Corrosion influence on bond in reinforced concrete. Cement and Concrete Research, 34(11), 2159-2167. https://doi.org/10.1016/j.cemconres.2004.04.006
  21. Jeong, H., Ji, S., Kim, J. H., Choi, S. H., Heo, I., and Kim, K. S. (2022). Development of Mapping Function to Estimate Bond-Slip and Bond Strength of RC Beams Using Genetic Programming. International Journal of Concrete Structures and Materials, 16(1), 49.
  22. Rilem, T. C. (1994). RC 6 Bond test for reinforcement steel. 2. Pull-out test, 1983. RILEM recommendations for the testing and use of constructions materials, 218-220.
  23. Korean Standards Association. (2010). KS F 2405. Standard Test Method for Compressive Strength of Concrete. Korean Standards Association (in Korean).
  24. KS, F. (2016). 2423. Standard Test Method for Tensile Splitting Strength of Concrete; Korea Standards Association: Seoul. Korea.
  25. KS, B. (2007). 0801, Test Pieces for Tensile Test for Metallic Materials, KS B 0801.
  26. Al-Sibahy, A., and Sabhan, M. (2020). Corrosion effects on the bond behaviour of steel bars in self-compacting concrete. Construction and Building Materials, 250, 118568.
  27. Kim, H. (2002). Effect of the rebar corrosion rate on bond strength in reinforced concrete: factors caused by compressive strength and embedded rebar condition (Masters dissertation). Hanyang University, Seoul, Republic of Korea. (in Korean)