DOI QR코드

DOI QR Code

알루미늄 보강재 적용에 따른 원형 단부 콘크리트 블록의 지압 보강 효과

Bearing Reinforcing Effect of Concrete Block with a Round End according to the Application of Aluminum Stiffener

  • Seok Hyeon Jeon (Department of Civil and Environmental Engineering, University of Nebraska-Lincoln) ;
  • Tae-Yun Kwon ;
  • Jin-Hee Ahn (Department of Civil and Infrastructure Engineering, Gyeongsang National University)
  • 투고 : 2023.03.27
  • 심사 : 2023.06.06
  • 발행 : 2023.06.30

초록

본 연구에서는 원형 단부 콘크리트의 알루미늄 보강재 적용에 따른 지압 성능을 평가하기 위하여 지압 시험을 수행하고 이를 해석적으로 평가하였다. 지압강도 실험에서는 원형 단부 콘크리트 제작용 알루미늄 거푸집을 이용한 알루미늄 보강재와 부재이동 및 조립을 위한 강재 앵커볼트로 인한 지압성능 변화를 확인하였다. FE 해석모델은 실험조건과 동일하게 구성하여 결과를 실험과 비교하였으며, 균열 양상과 응력 거동 등도 확인하였다. 또한, 알루미늄 보강재의 강도변화가 원형 단부 콘크리트에 미치는 영향도 해석적으로 평가하였다. 원형 단부 콘크리트는 알루미늄 보강재로 인하여 지압강도가 약 20% 증가하였고, 강재 앵커볼트는 지압강도에 영향을 미치지 않는 것으로 확인되었다. FE 해석 결과 나타난 최대 하중과 균열 양상은 실험과 유사하게 나타났다. 알루미늄 보강재의 강도변화에 따른 FE 해석 결과, 알루미늄 보강재의 강도가 10%, 20% 증가 및 감소함에 따른 최대하중 변화는 강도변화 전과 비교하여 최대 약 4% 수준으로 큰 영향이 없는 것으로 평가되었다.

In this study, a bearing test was performed and analytically evaluated to evaluate the bearing performance according to the application of the aluminum stiffener in round-end concrete. In the bearing strength test, the change in bearing performance due to the aluminum stiffener using the aluminum form for manufacturing concrete with round-end, and the steel anchor bolts for member movement and assembly was confirmed. The FE analysis model was identically configured to the experimental conditions, and the result was compared with the experiment. Also, the crack patterns and stress behavior were confirmed. In addition, the effect of strength change of the aluminum stiffener on the round-end concrete was also evaluated analytically. The bearing strength of the round-end concrete increased by about 20% due to the aluminum stiffener, and it was confirmed that the steel anchor bolt did not affect the bearing strength. The maximum load and crack patterns shown as a result of FE analysis were similar to those of the experiment. As a result of FE analysis according to the strength change of the aluminum stiffener, the maximum load change according to the increase and decrease of the strength of the aluminum stiffener by 10% and 20% was evaluated to have no significant effect at a maximum of about 4% compared to before the strength change.

키워드

과제정보

본 연구는 국토교통부 국토교통기술촉진연구사업(과제번호: 20CTAP-C152891-02)의 연구비 지원으로 수행되었으며, 이에 감사드립니다.

참고문헌

  1. Naciri, K., Aalil, I., Chaaba, A., and Al-Mukhtar, M. (2022), Numerical modeling of a masonry arch structure, Procedia Structural Integrity, 37, 469-476. https://doi.org/10.1016/j.prostr.2022.01.111
  2. Gupta, A., Taylor, S., Long, A., and Kirkpatrick, J. (2006), A Flexible Concrete Arch System for Durable Bridges, Concrete Research in Ireland Colloquium 2005.
  3. Long, A., McPolin, D., Kirkpatrick, J., Gupta, A., and Courtenay, D. (2014), FlexiArch: from concept to practical applications, Structural Engineer, 92(7), 10-15.
  4. Halding, P. S., Hertz, K. D., and Schmidt, J. W. (2015), Precast Pearl-Chain concrete arch bridges, Engineering Structures, 103(15), 214-227. https://doi.org/10.1016/j.engstruct.2015.09.012
  5. Chung, C. H., Joo, S. H., Choi, D. C., and Lee, J. Y. (2014), Structural Performance of Precast Concrete Arch with Reinforced Joint, KSCE Journal of Civil Engineering, 34(1), 29-47. (in Korean) https://doi.org/10.12652/Ksce.2014.34.1.0029
  6. Joo, S. H., Chung, C. H., and Bae, J. H. (2014), Strength Evaluation on Sectional Members of Prefabricated Precast Concrete Arch with Reinforced Joint, KSCE Journal of Civil Engineering, 34(5), 1363-1372. (in Korean) https://doi.org/10.12652/Ksce.2014.34.5.1363
  7. Jeon, S. H., Cho, K.-I., Huh, J., and Ahn, J.-H. (2019), The performance assessment of a precast, panel-segmented arch bridge with outriggers, Applied Sciences, MDPI, 9(21), 4646.
  8. Ahn, J.-H., Yim, H. J., Bang, J. S., and Jeon, S. H. (2020), Pull-out Capacity of Cast-in-place Anchor for Construction of Precast Concrete Segment Arch, Journal of the Korea Institute f or Structural Maintenance and Inspection, 24(2), 94-102. (in Korean)
  9. Jeon, S. H., Cho, K.-I., Lee, W.-H., Huh, J. W., and Ahn, J.-H. (2021(a)), Lifting Test and Analysis of a Segmented Arch System with Outrigger Ribs and Flexural Loading Tests of Precast Panels, KSCE Journal of Civil Engineering, 25(11), 4285-4303. (in Korean) https://doi.org/10.1007/s12205-021-1553-0
  10. Jeon, S. H., Moon, H. D., Sim, C., and Ahn, J.-H. (2021(b)), Construction stage analysis of a precast concrete buried arch bridge with steel outriggers from full-scale field test, Structures, Elsevier, 29(8), 1671-1689. https://doi.org/10.1016/j.istruc.2020.12.050
  11. Lim, J.-S., Choi, S., Park, Y.-D., Jeong, Y.-D., and Yi, S.-T. (2022), Effect of Placement Direction of Concrete on Compressive Strength and Size Effect of Specimens Using MSFEM, Journal of the Korea Concrete Institute, 34(1), 83-88. (in Korean) https://doi.org/10.4334/JKCI.2022.34.1.083
  12. Li, M., Hao, H., Shi, Y., and Hao, Y. (2018), Specimen shape and size effects on the concrete compressive strength under static and dynamic tests, Construction and Building Materials, 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069
  13. Talaat, A., Emad, A., Tarek, A., Masbouba, M., Essam, A., and Kohail, M. (2021), Factors affecting the results of concrete compression testing: A review, Ain Shams Engineering Journal, 12(1), 205-221. https://doi.org/10.1016/j.asej.2020.07.015
  14. ABAQUS (2014), Abaqus/CAE User's Guide, Dassault Systems Simulia Corp.
  15. ACI, C., (2014), Building code requirements for structural concrete (ACI 318-14). American Concrete Institute: Farmington Hills, MI, USA.
  16. Nguyen, T. V., Seo, J., Ahn, J.-H., Haldar, A., and Huh, J. (2021), Finite element analysis-aided seismic behavior examination of modular underground arch bridge, Tunnelling and Underground Space Technology, 118, 104166.
  17. Georgantzia, E., Ali, S. B., Gkantou, M., Kamaris, G. S., Kansara, K. D., and Atherton, W. (2021), Flexural buckling performance of concrete-filled aluminium alloy tubular columns, Engineering Structures, 242, 112546
  18. Kim, K. S., Park, K. T., and Park, C. J. (2021), Structural Behavior of RC Beams with Headed Bars using Finite Element Analysis, Journal of the Korea Institute for Structural Maintenance and Inspection, 25(5), 40-47. (in Korean)
  19. Kent, D. C., and Park, R. (1971), Flexural members with confined concrete, Journal of Structural Division, 97(7), 1969-1990. https://doi.org/10.1061/JSDEAG.0002957
  20. Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989), A plasticdamage model for concrete, International Journal of Solids and Structures, 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4
  21. Hafezolghorani, M., Hejazi, F., and Vaghei, R. (2017), Simplified Damage Plasticity Model for Concrete, Structural Engineering International, Taylor & Francis, 27(1), 68-78. https://doi.org/10.2749/101686616X1081
  22. Thomesen, S., Hopperstad, O. S., and Borvik, T. (2021), Anisotropic Plasticity and Fracture of Three 6000-Series Aluminum Alloys, Metals, 11(4), 557.