Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. RS-2023-00155966, Artificial Intelligence Convergence Innovation Human Resources Development (Ewha Womans University)), and received research support from Rowan in 2023.
References
- Korea Institute for Health and Social Affairs, Health and Welfare Policy Issues and Policy Tasks, pp.97,2014
- Hong, J. S., Wasden, C., & Han, D. H. "Introduction of digital therapeutics," Computer Methods and Programs in Biomedicine, 209, 106319, 2021.
- Park, H. K., Jeong, J. H., Moon, S. Y., Park, Y. K., Hong, C. H., Na, H. R., ... & Choi, S. H. "South Korean study to prevent cognitive impairment and protect brain health through lifestyle intervention in at-risk elderly people: Protocol of a multicenter, randomized controlled feasibility trial," Journal of Clinical Neurology (Seoul, Korea), 16(2), 292,
- Moon, S. Y., Hong, C. H., Jeong, J. H., Park, Y. K., Na, H. R., Song, H. S., ... & Choi, S. H., "Facility-based and home-based multidomain interventions including cognitive training, exercise, diet, vascular risk management, and motivation for older adults: a randomized controlled feasibility trial." Aging (Albany NY), 13(12), 15898, 2021.
- Park, S. Y., Kim, D., Kim, B. J., Ju, K. W., Kim, Y. K., Park, J. Y., & Lee, J. H, "Digital Therapeutics (DTx) for Temporomandibular Disorder (TMD)", Archives of Clinical and Medical Case Reports, 6(6), 725-729, 2022. https://doi.org/10.26502/acmcr.96550550
- de Oliveira, C. M., Bolognese, L. B., Balcells, M., Aragon, D. C., Zagury, R. L., Nobrega, C., & Liu, C., "A data-driven approach to manage type 2 diabetes mellitus through digital health: The Klivo Intervention Program protocol (KIPDM)," Plos one, 18(2), e0281844, 2023.
- Moon, S. Y., Shin, S. A., Jeong, J. H., Hong, C. H., Park, Y. K., Na, H. R., ... & Choi, S. H., "Impact of a multidomain lifestyle intervention on regional spontaneous brain activity," Frontiers in Aging Neuroscience, 841, 2022.
- Clark, D. O., Von Korff, M., Saunders, K., Baluch, W. M., & Simon, G. E., "A chronic disease score with empirically derived weights," Medical care, 33(8), 783-795, 1995. https://doi.org/10.1097/00005650-199508000-00004
- Boldrini, M., Cappelli, F., Chacko, L., Restrepo-Cordoba, M. A., Lopez-Sainz, A., Giannoni, A., ... & Fontana, M., "Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis," Cardiovascular Imaging, 13(4), 909-920,
- Mathotaarachchi, S., Pascoal, T. A., Shin, M., Benedet, A. L., Kang, M. S., Beaudry, T., ... & Alzheimer's Disease Neuroimaging Initiative, "Identifying incipient dementia individuals using machine learning and amyloid imaging," Neurobiology of aging, 59, 80-90, 2017. https://doi.org/10.1016/j.neurobiolaging.2017.06.027
- Herzog, N. J., & Magoulas, G. D., "Brain asymmetry detection and machine learning classification for diagnosis of early dementia", Sensors, 21(3), 778, 2021.
- Bansal, D., Chhikara, R., Khanna, K., & Gupta, P., "Comparative analysis of various machine learning algorithms for detecting dementia," Procedia computer science, 132, 1497-1502, 2018. https://doi.org/10.1016/j.procs.2018.05.102
- Mathkunti, N. M., & Rangaswamy, S., "Machine learning techniques to identify dementia," SN Computer Science, 1(3), 118,
- Zhu, F., Li, X., Tang, H., He, Z., Zhang, C., Hung, G. U., ... & Zhou, W., "Machine learning for the preliminary diagnosis of dementia". Scientific Programming, 1-10.,
- Jiyong Kim, Jisoo Lee, Minseo Park, "Analysis of Lifelong for Health of Middle-Aged Men by Using Machine Learning Algorithm", Journal of the Korean Institute of Industrial Engineers,47(6),504-513, 2021. https://doi.org/10.7232/JKIIE.2021.47.6.504
- Kim, J., & Park, M., "A Study on ML-Based Sleep Score Model Using Lifelog Data", Applied Sciences, 13(2), 1043, 2023.
- Kwon, H., Kim, H. H., An, J., Lee, J. H., & Park, Y. R., "Lifelog data-based prediction model of digital health care app customer churn: retrospective observational study," Journal of Medical Internet Research, 23(1), e22184, 2021.
- Palbar, T., Kesavulu, M., Gurrin, C., & Verbruggen, R., "Prediction of Blood Glucose Using Contextual LifeLog Data," In Proceedings of MultiMedia Modeling: 28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6-10, 2022, Proceedings, Part I (pp. 404-415). Cham: Springer International Publishing, 2022.
- Chen, T., & Guestrin, C., "Xgboost: A scalable tree boosting system," In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), 2016.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y., "Lightgbm: A highly efficient gradient boosting decision tree," Advances in neural information processing systems, 30, 2017.
- Dorogush, A. V., Ershov, V., & Gulin, A., "CatBoost: gradient boosting with categorical features support," arXiv preprint arXiv:1810.11363, 2018.
- Oh, H. R., Son, A. L., & Lee, Z., "Occupational accident prediction modeling and analysis using SHAP," Journal of Digital Contents Society, 22(7), 1115-1123, 2021. https://doi.org/10.9728/dcs.2021.22.7.1115
- Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M., "Optuna: A next-generation hyperparameter optimization framework," In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2623-2631), 2019.
- Lundberg, S. M., & Lee, S. I., "A unified approach to interpreting model predictions," Advances in neural information processing systems, 30, 2017
- Jhaveri, S., Khedkar, I., Kantharia, Y., & Jaswal, S., "Success prediction using random forest, catboost, xgboost and adaboost for kickstarter campaigns," In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1170-1173). IEEE, 2019.
- Hussain, S., Mustafa, M. W., Jumani, T. A., Baloch, S. K., Alotaibi, H., Khan, I., & Khan, A., "A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection," Energy Reports, 7, 4425-4436, 2021. https://doi.org/10.1016/j.egyr.2021.07.008
- Zhang, Y., Ma, J., Liang, S., Li, X., & Li, M., "An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products," Remote Sensing, 12(24), 4015, 2020.