DOI QR코드

DOI QR Code

Prediction of Cognitive Ability Utilizing a Machine Learning approach based on Digital Therapeutics Log Data

  • Yeojin Kim (Department of Computer Science and Engineering, Ewha Womans University) ;
  • Jiseon Yang (Department of Artificial Intelligence) ;
  • Dohyoung Rim (Department of Artificial Intelligence) ;
  • Uran Oh (Department of Computer Science and Engineering, Ewha Womans University)
  • Received : 2023.03.05
  • Accepted : 2023.03.13
  • Published : 2023.06.30

Abstract

Given the surge in the elderly population, and increasing in dementia cases, there is a growing interest in digital therapies that facilitate steady remote treatment. However, in the cognitive assessment of digital therapies through clinical trials, the absence of log data as an essential evaluation factor is a significant issue. To address this, we propose a solution of utilizing weighted derived variables based on high-importance variables' accuracy in log data utilization as an indirect cognitive assessment factor for digital therapies. We have validated the effectiveness of this approach using machine learning techniques such as XGBoost, LGBM, and CatBoost. Thus, we suggest the use of log data as a rapid and indirect cognitive evaluation factor for digital therapy users.

Keywords

Acknowledgement

This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No. RS-2023-00155966, Artificial Intelligence Convergence Innovation Human Resources Development (Ewha Womans University)), and received research support from Rowan in 2023.

References

  1. Korea Institute for Health and Social Affairs, Health and Welfare Policy Issues and Policy Tasks, pp.97,2014
  2. Hong, J. S., Wasden, C., & Han, D. H. "Introduction of digital therapeutics," Computer Methods and Programs in Biomedicine, 209, 106319, 2021.
  3. Park, H. K., Jeong, J. H., Moon, S. Y., Park, Y. K., Hong, C. H., Na, H. R., ... & Choi, S. H. "South Korean study to prevent cognitive impairment and protect brain health through lifestyle intervention in at-risk elderly people: Protocol of a multicenter, randomized controlled feasibility trial," Journal of Clinical Neurology (Seoul, Korea), 16(2), 292,
  4. Moon, S. Y., Hong, C. H., Jeong, J. H., Park, Y. K., Na, H. R., Song, H. S., ... & Choi, S. H., "Facility-based and home-based multidomain interventions including cognitive training, exercise, diet, vascular risk management, and motivation for older adults: a randomized controlled feasibility trial." Aging (Albany NY), 13(12), 15898, 2021.
  5. Park, S. Y., Kim, D., Kim, B. J., Ju, K. W., Kim, Y. K., Park, J. Y., & Lee, J. H, "Digital Therapeutics (DTx) for Temporomandibular Disorder (TMD)", Archives of Clinical and Medical Case Reports, 6(6), 725-729, 2022. https://doi.org/10.26502/acmcr.96550550
  6. de Oliveira, C. M., Bolognese, L. B., Balcells, M., Aragon, D. C., Zagury, R. L., Nobrega, C., & Liu, C., "A data-driven approach to manage type 2 diabetes mellitus through digital health: The Klivo Intervention Program protocol (KIPDM)," Plos one, 18(2), e0281844, 2023.
  7. Moon, S. Y., Shin, S. A., Jeong, J. H., Hong, C. H., Park, Y. K., Na, H. R., ... & Choi, S. H., "Impact of a multidomain lifestyle intervention on regional spontaneous brain activity," Frontiers in Aging Neuroscience, 841, 2022.
  8. Clark, D. O., Von Korff, M., Saunders, K., Baluch, W. M., & Simon, G. E., "A chronic disease score with empirically derived weights," Medical care, 33(8), 783-795, 1995. https://doi.org/10.1097/00005650-199508000-00004
  9. Boldrini, M., Cappelli, F., Chacko, L., Restrepo-Cordoba, M. A., Lopez-Sainz, A., Giannoni, A., ... & Fontana, M., "Multiparametric echocardiography scores for the diagnosis of cardiac amyloidosis," Cardiovascular Imaging, 13(4), 909-920,
  10. Mathotaarachchi, S., Pascoal, T. A., Shin, M., Benedet, A. L., Kang, M. S., Beaudry, T., ... & Alzheimer's Disease Neuroimaging Initiative, "Identifying incipient dementia individuals using machine learning and amyloid imaging," Neurobiology of aging, 59, 80-90, 2017. https://doi.org/10.1016/j.neurobiolaging.2017.06.027
  11. Herzog, N. J., & Magoulas, G. D., "Brain asymmetry detection and machine learning classification for diagnosis of early dementia", Sensors, 21(3), 778, 2021.
  12. Bansal, D., Chhikara, R., Khanna, K., & Gupta, P., "Comparative analysis of various machine learning algorithms for detecting dementia," Procedia computer science, 132, 1497-1502, 2018. https://doi.org/10.1016/j.procs.2018.05.102
  13. Mathkunti, N. M., & Rangaswamy, S., "Machine learning techniques to identify dementia," SN Computer Science, 1(3), 118,
  14. Zhu, F., Li, X., Tang, H., He, Z., Zhang, C., Hung, G. U., ... & Zhou, W., "Machine learning for the preliminary diagnosis of dementia". Scientific Programming, 1-10.,
  15. Jiyong Kim, Jisoo Lee, Minseo Park, "Analysis of Lifelong for Health of Middle-Aged Men by Using Machine Learning Algorithm", Journal of the Korean Institute of Industrial Engineers,47(6),504-513, 2021. https://doi.org/10.7232/JKIIE.2021.47.6.504
  16. Kim, J., & Park, M., "A Study on ML-Based Sleep Score Model Using Lifelog Data", Applied Sciences, 13(2), 1043, 2023.
  17. Kwon, H., Kim, H. H., An, J., Lee, J. H., & Park, Y. R., "Lifelog data-based prediction model of digital health care app customer churn: retrospective observational study," Journal of Medical Internet Research, 23(1), e22184, 2021.
  18. Palbar, T., Kesavulu, M., Gurrin, C., & Verbruggen, R., "Prediction of Blood Glucose Using Contextual LifeLog Data," In Proceedings of MultiMedia Modeling: 28th International Conference, MMM 2022, Phu Quoc, Vietnam, June 6-10, 2022, Proceedings, Part I (pp. 404-415). Cham: Springer International Publishing, 2022.
  19. Chen, T., & Guestrin, C., "Xgboost: A scalable tree boosting system," In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), 2016.
  20. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y., "Lightgbm: A highly efficient gradient boosting decision tree," Advances in neural information processing systems, 30, 2017.
  21. Dorogush, A. V., Ershov, V., & Gulin, A., "CatBoost: gradient boosting with categorical features support," arXiv preprint arXiv:1810.11363, 2018.
  22. Oh, H. R., Son, A. L., & Lee, Z., "Occupational accident prediction modeling and analysis using SHAP," Journal of Digital Contents Society, 22(7), 1115-1123, 2021. https://doi.org/10.9728/dcs.2021.22.7.1115
  23. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M., "Optuna: A next-generation hyperparameter optimization framework," In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2623-2631), 2019.
  24. Lundberg, S. M., & Lee, S. I., "A unified approach to interpreting model predictions," Advances in neural information processing systems, 30, 2017
  25. Jhaveri, S., Khedkar, I., Kantharia, Y., & Jaswal, S., "Success prediction using random forest, catboost, xgboost and adaboost for kickstarter campaigns," In 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC) (pp. 1170-1173). IEEE, 2019.
  26. Hussain, S., Mustafa, M. W., Jumani, T. A., Baloch, S. K., Alotaibi, H., Khan, I., & Khan, A., "A novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detection," Energy Reports, 7, 4425-4436, 2021. https://doi.org/10.1016/j.egyr.2021.07.008
  27. Zhang, Y., Ma, J., Liang, S., Li, X., & Li, M., "An evaluation of eight machine learning regression algorithms for forest aboveground biomass estimation from multiple satellite data products," Remote Sensing, 12(24), 4015, 2020.