DOI QR코드

DOI QR Code

Analysis of Seasonal Airborne Radon Concentration Characteristics in Public-Use Facilities

  • Received : 2023.05.19
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

Purpose: The purpose of this study is to investigate the characteristics of airborne radon concentration by season in public-use facilities in South Korea. Research design, data and methodology: The data is provided by the public data portal, and public-use facilities nationwide where radon in the air is measured are specialized sanatorium for senior citizens, libraries, childcare facilities, postpartum care centers, medical institutions, funeral halls, underground shopping malls, and underground subway stations. Results: The facility with the highest radon concentration in public-use facilities was childcare facilities with an average of 50.2 ± 21.7 Bq/m3, while the average of medical institutions was the lowest at 24.8 ± 5.7 Bq/m3. The season with the largest difference in average radon concentration between childcare facilities and medical institutions was in the order of fall (28.6 Bq/m3), followed by winter (28.1 Bq/m3), spring (23.0 Bq/m3), and summer (22.0 Bq/m3). Conclusions: The main concentration levels of each public-use facility shown in this study are all below domestic and international standards, but there is a significant concentration difference between facilities. By season, winter showed the highest average concentration (40.6 ± 21.3 Bq/m3) and summer showed the lowest average concentration (23.8 ± 14.0 Bq/m3).

Keywords

References

  1. Alghamdi, A. S., & Aleissa, K. A. (2014). Influences on indoor radon concentrations in Riyadh, Saudi Arabia. Radiation Measurements, 62, 35-40.
  2. HA, A. G. (2008). Exposure of school children to alpha particles. Iranian J Radiat Res. 6 (3): 113-120.
  3. Alkan, T., & KARADENIZ, O. (2014). Indoor 222Rn levels and effective dose estimation of academic staff in Izmir-Turkey. Biomedical and Environmental Sciences, 27(4), 259-267.
  4. Bu-Olayan, A. H., & Thomas, B. V. (2016). Evaluation of Radon Pollution in Underground Parking Lots by Discomfort Index. Iranian Journal of Medical Physics/Majallah-I Fizik-I Pizishki-i Iran, 13(2).
  5. David Bodansky, Maurice A. Robkin and David R.stadler. (1987). Indoor Radon and Its Hazards, University of Washinton Press.
  6. Doi, M., & Kobayashi, S. (1996). Surveys of concentration of radon isotopes in indoor and outdoor air in Japan. Environment International, 22, 649-655.
  7. Duggal, V., Rani, A., & Mehra, R. (2014). A study of seasonal variations of radon levels in different types of dwellings in Sri Ganganagar district, Rajasthan. Journal of radiation research and applied sciences, 7(2), 201-206. https://doi.org/10.1016/j.jrras.2014.02.007
  8. Environmental Protection Agency (EPA). (2001). Building radon out: a Step-by-step guide on how to build radonresistant homes. Environmental Protection Agency (EPA 402-K-01-002).
  9. Environmental Protection Agency (EPA). (2003). EPA assessment of risks from radon in homes. Environmental Protection Agency (EPA 402-R-03-003).
  10. Gue, L. (2015). Revising Canada's radon guideline. David Suzuki Foundation. Download this free report at www.davidsuzuki.org/publications.
  11. Health Protection Agency (HPA). (2009). Radon and public health. Health Protection Agency.
  12. Hospodsky, D., Yamamoto, N., Nazaroff, W. W., Miller, D., Gorthala, S., & Peccia, J. (2015). Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children's classrooms. Indoor air, 25(6), 641-652. https://doi.org/10.1111/ina.12172
  13. Hwang, S. H., Park, J. B., & Park, W. M. (2018). Radon and NO2 levels and related environmental factors in 100 underground subway platforms over two-year period. Journal of environmental radioactivity, 181, 102-108. https://doi.org/10.1016/j.jenvrad.2017.11.003
  14. Jeon, J. S., Lee, J. Y., Eom, S. W., & Chae, Y. Z. (2011). The variation characteristics of indoor radon concentration from buildings with different environment, Seoul. Journal of Korean Society for Atmospheric Environment, 27(6), 692-702. https://doi.org/10.5572/KOSAE.2011.27.6.692
  15. Lee, G. W., Yang, J. Y., Kim, H. J., Kwon, M. H., Lee, W. S., Kim, G. H., ... & Lim, Y. W. (2017). Estimation of health risk and effective dose based on measured radon levels in Korean homes and a qualitative assessment for residents' radon awareness. Indoor and Built Environment, 26(8), 1123-1134. https://doi.org/10.1177/1420326X16664387
  16. Lubin, J. H., Wang, Z. Y., Boice Jr, J. D., Xu, Z. Y., Blot, W. J., De Wang, L., & Kleinerman, R. A. (2004). Risk of lung cancer and residential radon in China: pooled results of two studies. International journal of cancer, 109(1), 132-137. https://doi.org/10.1002/ijc.11683
  17. Ministry of Environment of Korea. (2015). Indoor Air quality management in public facilities Indoor Air Quality Management Act Amendment
  18. Moreno, V., Baixeras, C., Font, L., & Bach, J. (2008). Indoor radon levels and their dynamics in relation with the geological characteristics of La Garrotxa, Spain. Radiation Measurements, 43(9-10), 1532-1540. https://doi.org/10.1016/j.radmeas.2008.06.003
  19. Mose, D. G., Mushrush, G. W., & Chrosniak, C. E. (1992). A two-year study of seasonal indoor radon variations in southern Maryland. Environmental Pollution, 76(3), 195-199. https://doi.org/10.1016/0269-7491(92)90137-Y
  20. National Institute of Environmental Research (NIER). (2012a). A study on the spatial distribution characteristics of indoor radon level in Korea. National Institute of Environmental Research.
  21. National Institute of Environmental Research (NIER). (2012b). Nationwide survey (2011-2012) of indoor radon at home in Korea. National Institute of Environmental Research.
  22. National Institute of Environmental Research (NIER). (2014). Nationwide survey (2013-2014) of indoor radon at home in Korea. National Institute of Environmental Research.
  23. Sahoo, B. K., Nathwani, D., Eappen, K. P., Ramachandran, T. V., Gaware, J. J., & Mayya, Y. S. (2007). Estimation of radon emanation factor in Indian building materials. Radiation Measurements, 42(8), 1422-1425.
  24. Teiri, H., Nazmara, S., Abdolahnejad, A., Hajizadeh, Y., & Amin, M. M. (2021). Indoor radon measurement in buildings of a university campus in central Iran and estimation of its effective dose and health risk assessment. Journal of Environmental Health Science and Engineering, 19(2), 1643-1652.
  25. United Nations scientific committee on the effect of atomic radiation. (2006). Report, Sources-to-Effects Assessment for radon in homes and workplaces. Volume II, Annex E. United Nation, New York, USA.
  26. United Nations Scientific Committee on the Effects of Atomic Radiation(UNSCEAR), (1988). "Source Effects and Risk of Ionizing Radiation", Report to the General Assembly with Annexes, United Nations, New York.
  27. WHO Handbook on Indoor Radon: A Public Health Perspective Geneva: WHO. (2009). http://whqlibdoc.who.int/publications/2009/9789241547673_eng.pdf.
  28. World Health Organization. (2021). Radon and health, Fact sheets, On August 13, 2021. http://who.int/news-room/factsheets/detail/radon-and-health.
  29. Xie, D., Liao, M., & Kearfott, K. J. (2015). Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building-A case study. Radiation Measurements, 82, 52-58. https://doi.org/10.1016/j.radmeas.2015.08.008
  30. Yu, K. N., Young, E. C. M., & Wong, K. C. (1996). A survey of radon properties in underground railway stations in Hong Kong. Journal of Radiological Protection, 16(1), 37.
  31. Zoo, D. H., Park, K. H., Jeong, H. W., Lim, H. J., Bok, D. S., Yun, D. W., ... & Kim, S. Y. (2015). A study on indoor radon concentration among vulnerable households in Korea. Journal of Environmental Health Sciences, 41(2), 61-70. Doi:10.5668/JEHS.2015.41.2.61