Acknowledgement
This work was mainly funded by the National Key R&D Project of China (No.2019YFE0112500), the Natural Science Foundation of Guangdong Province of China (No. 2021A1515010586), and the National Natural Science Foundation of China (No.51978185). We gratefully acknowledge their supports.
References
- Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031.
- Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
- Chen, J., Lu, G., Li, Y., Wang, T., Wang, W. and Song, G. (2017), "Experimental study on robustness of an eddy current-tuned mass damper", Appl. Sci., 7(9), 895. https://doi.org/10.3390/app7090895.
- Chen, X., Li, A., Zhang, Z., Hu, L., Sun, P., Fan, Z. and Liu, X. (2020), "Improving the wind-induced human comfort of the Beijing Olympic Tower by a double-stage pendulum tuned mass damper", Struct. Des. Tall Spec. Build., 29(4), e1704. https://doi.org/10.1002/tal.1704.
- Chowdhury, I. and Dasgupta, S.P. (2003), "Computation of Rayleigh damping coefficients for large systems", Electr. J. Geotech. Eng., 8(0), 1-11.
- Clough, R. and Penzien, J. (2003), Dynamics of Structures, 3rd Editor, Computers & Structures Inc, California.
- Dai, J., Xu, Z.D. and Gai, P.P. (2020), "Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges", Eng. Struct., 221, 111084. https://doi.org/10.1016/j.engstruct.2020.111084.
- Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692.
- Den Hartog, J. (1956), Mechanical Vibration, 4th Edition, McGraw-Hill, New York.
- Elias, S. and Matsagar, V. (2018), "Wind response control of tall buildings with a tuned mass damper", J. Build. Eng., 15, 51-60. https://doi.org/10.1016/j.jobe.2017.11.005.
- Fang, H., Liu, L., Zhang, D. and Wen, M. (2019), "Tuned mass damper on a damped structure", Struct. Control Hlth. Monit., 26(3), e2324. https://doi.org/10.1002/stc.2324.
- Hanselman, D.C. and Littlefield, B. (2011), Mastering MATLAB, Prentice Hall Press.
- He, K., He, X., Fang, Z., Zheng, X. and Yu, H. (2018), "Study on wind-induced vibration and fatigue life of cable-stayed flexible antenna", IOP Conf. Ser.: Earth Environ. Sci., 128(1), 012119. https://doi.org/10.1088/1755-1315/128/1/012119.
- Hori, Y., Kurino, H. and Kurokawa, Y. (2016), "Development of large tuned mass damper with stroke control system for seismic upgrading of existing high-rise building", Int. J. High-Rise Build., 5(3), 167-176. https://doi.org/10.21022/IJHRB.2016.5.3.167.
- Huang, Z.W., Hua, X.G., Chen, Z.Q. and Niu, H.W. (2018), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerosp. Eng., 31(5), 04018063. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891.
- Hussain, R.R., Wasim, M. and Hasan. S. (2016), Introduction to ETABS.
- Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng., 113(12), 2382-2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382).
- Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Arch. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375.
- Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review", J. Build. Eng., 33, 101582. https://doi.org/10.1016/j.jobe.2020.101582.
- Khodaie, N. (2020), "Vibration control of super-tall buildings using combination of tapering method and TMD system", J. Wind Eng. Indus. Aerodyn., 196, 104031. https://doi.org/10.1016/j.jweia.2019.104031.
- Kim, Y.M., Kwak, Y.H., Choi, M.S., Lee, J.J. and Cho, K.S. (2011), "Wind engineering on the new millennium Bridge in South Korea", Procedia Eng., 14, 1472-1479. https://doi.org/10.1016/j.proeng.2011.07.185.
- Lin, G.L., Lu, L.Y., Lei, K.T., Liu, K.Y., Ko, Y.Y. and Ju, S.H. (2021), "Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect", Marine Struct., 77, 102961. https://doi.org/10.1016/j.marstruc.2021.102961.
- Liu, K., Liu, L., Zhu, Q., Liu, Y. and Zhou, F. (2021, December), "Dynamic testing and numerical simulation of human-induced vibration of cantilevered floor with tuned mass dampers", Struct., 34, 1475-1488. https://doi.org/10.1016/j.istruc.2021.08.079.
- Liu, Y., Wang, K., Mercan, O., Chen, H. and Tan, P. (2020), "Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures", Eng. Struct., 211, 110486. https://doi.org/10.1016/j.engstruct.2020.110486.
- Losanno, D., Palumbo, F., Calabrese, A., Barrasso, T. and Vaiana, N. (2022), "Preliminary investigation of aging effects on recycled rubber fiber reinforced bearings (RR-FRBs)", J. Earthq. Eng., 26(10), 5407-5424. https://doi.org/10.1080/13632469.2021.1871683.
- Lu, X. and Chen, J. (2011), "Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper", Struct. Des. Tall Spec. Build., 20(4), 435-452. https://doi.org/10.1002/tal.659.
- Lu, X., Li, P., Guo, X., Shi, W. and Liu, J. (2014), "Vibration control using ATMD and site measurements on the Shanghai World Financial Center Tower", Struct. Des. Tall Spec. Build., 23(2), 105-123. https://doi.org/10.1002/tal.1027.
- Lu, X., Zhang, Q., Weng, D., Zhou, Z., Wang, S., Mahin, S.A., ... & Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Hlth. Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882.
- Lu, Z., Huang, B., Zhang, Q. and Lu, X. (2018), "Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations", J. Sound Vib., 421, 153-165.https://doi.org/10.1016/j.jsv.2017.10.035.
- Mortezaie, H. and Zamanian, R. (2021), "Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD", Struct. Eng. Mech., 77(6), 721-734. https://doi.org/10.12989/sem.2021.77.6.721.
- Nakai, T., Kurino, H., Yaguchi, T. and Kano, N. (2019), "Control effect of large tuned mass damper used for seismic retrofitting of existing high-rise building", JPN Arch. Rev., 2(3), 269-286. https://doi.org/10.1002/2475-8876.12100.
- Pavic, A. and Willford, M. (2005), "Vibration serviceability of posttensioned concrete floors", Post-Tensioned Concrete Floors Design Handbook, Appendix G, Technical Report 43.
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
- Qu, W.L., Chen, Z.H. and Xu, Y.L. (2001), "Dynamic analysis of wind-excited truss tower with friction dampers", Comput. Struct., 79(32), 2817-2831. https://doi.org/10.1016/S0045-7949(01)00151-1.
- Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
- Shu, Z., Li, S., Zhang, J. and He, M. (2017), "Optimum seismic design of a power plant building with pendulum tuned mass damper system by its heavy suspended buckets", Eng. Struct., 136, 114-132. https://doi.org/10.1016/j.engstruct.2017.01.010.
- Simiu, E. and Yeo, D.H. (2019), Wind Effects on Structures: Modern Structural Design for Wind, John Wiley & Sons.
- Sone, T., Ogino, K., Kamoshita, N., Muto, K., Ide, Y., Murata, K., ... & Yamamoto, M. (2019), "Experimental verification of a tuned mass damper system with two-phase support mechanism", JPN Arch. Rev., 2(3), 250-258. https://doi.org/10.1002/2475-8876.12095.
- Takewaki, I. (2015), "Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience", Technical Articles, 1, 9. https://doi.org/10.1186/s40984-015-0007-6.
- Taniguchi, T., Der Kiureghian, A. and Melkumyan, M. (2008), "Effect of tuned mass damper on displacement demand of base-isolated structures", Eng. Struct., 30(12), 3478-3488. https://doi.org/10.1016/j.engstruct.2008.05.027.
- Tuan, A.Y. and Shang, G.Q. (2014), "Vibration control in a 101- storey building using a tuned mass damper", J. Appl. Sci. Eng., 17(2), 141-156. https://doi.org/10.6180/jase.2014.17.2.05.
- Vaiana, N., Losanno, D. and Ravichandran, N. (2021), "A novel family of multiple springs models suitable for biaxial rate-independent hysteretic behavior", Comput. Struct., 244, 106403. https://doi.org/10.1016/j.compstruc.2020.106403.
- Vaiana, N., Sessa, S. and Rosati, L. (2021), "A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena", Mech. Syst. Signal Pr., 146, 106984.https://doi.org/10.1016/j.ymssp.2020.106984.
- Vaiana, N., Sessa, S., Marmo, F. and Rosati, L. (2018), "A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials", Nonlin. Dyn., 93, 1647-1669. https://doi.org/10.1007/s11071-018-4282-2.
- Vaiana, N., Spizzuoco, M. and Serino, G. (2017), "Wire rope isolators for seismically base-isolated lightweight structures: Experimental characterization and mathematical modeling", Eng. Struct., 140, 498-514. https://doi.org/10.1016/j.engstruct.2017.02.057.
- Wang, D., Tse, T. K., Zhou, Y. and Li, Q. (2015), "Structural performance and cost analysis of wind-induced vibration control schemes for a real super-tall building", Struct. Infrastr. Eng., 11(8), 990-1011. https://doi.org/10.1080/15732479.2014.925941.
- Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.
- Xiang, P. and Nishitani, A. (2015), "Optimum design and application of non-traditional tuned mass damper toward seismic response control with experimental test verification", Earthq. Eng. Struct. Dyn., 44(13), 2199-2220. https://doi.org/10.1002/eqe.2579.
- Yang, Y., Dai, W. and Liu, Q. (2015), "Design and implementation of two-degree-of-freedom tuned mass damper in milling vibration mitigation", J. Sound Vib., 335, 78-88. https://doi.org/10.1016/j.jsv.2014.09.032.
- Yang, Y., Munoa, J. and Altintas, Y. (2010), "Optimization of multiple tuned mass dampers to suppress machine tool chatter", Int. J. Mach. Tool. Manuf., 50(9), 834-842. https://doi.org/10.1016/j.ijmachtools.2010.04.011.
- Zhu, Q., Liu, K., Liu, L., Du, Y. and Zivanovic, S. (2020), "Experimental and numerical analysis on serviceability of cantilevered floor based on human-structure interaction", J. Constr. Steel Res., 173, 106184. https://doi.org/10.1016/j.jcsr.2020.106184.