DOI QR코드

DOI QR Code

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu (College of Civil Engineering, Xi'an University of Architecture and Technology) ;
  • Yanhui Liu (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University) ;
  • Chia-Ming Chang (Department of Civil Engineering, National Taiwan University) ;
  • Ping Tan (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University)
  • Received : 2022.04.23
  • Accepted : 2023.04.17
  • Published : 2023.05.25

Abstract

A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.

Keywords

Acknowledgement

This work was mainly funded by the National Key R&D Project of China (No.2019YFE0112500), the Natural Science Foundation of Guangdong Province of China (No. 2021A1515010586), and the National Natural Science Foundation of China (No.51978185). We gratefully acknowledge their supports.

References

  1. Bae, J.S., Kwak, M.K. and Inman, D.J. (2005), "Vibration suppression of a cantilever beam using eddy current damper", J. Sound Vib., 284(3-5), 805-824. https://doi.org/10.1016/j.jsv.2004.07.031.
  2. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  3. Chen, J., Lu, G., Li, Y., Wang, T., Wang, W. and Song, G. (2017), "Experimental study on robustness of an eddy current-tuned mass damper", Appl. Sci., 7(9), 895. https://doi.org/10.3390/app7090895.
  4. Chen, X., Li, A., Zhang, Z., Hu, L., Sun, P., Fan, Z. and Liu, X. (2020), "Improving the wind-induced human comfort of the Beijing Olympic Tower by a double-stage pendulum tuned mass damper", Struct. Des. Tall Spec. Build., 29(4), e1704. https://doi.org/10.1002/tal.1704.
  5. Chowdhury, I. and Dasgupta, S.P. (2003), "Computation of Rayleigh damping coefficients for large systems", Electr. J. Geotech. Eng., 8(0), 1-11.
  6. Clough, R. and Penzien, J. (2003), Dynamics of Structures, 3rd Editor, Computers & Structures Inc, California.
  7. Dai, J., Xu, Z.D. and Gai, P.P. (2020), "Parameter determination of the tuned mass damper mitigating the vortex-induced vibration in bridges", Eng. Struct., 221, 111084. https://doi.org/10.1016/j.engstruct.2020.111084.
  8. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692.
  9. Den Hartog, J. (1956), Mechanical Vibration, 4th Edition, McGraw-Hill, New York.
  10. Elias, S. and Matsagar, V. (2018), "Wind response control of tall buildings with a tuned mass damper", J. Build. Eng., 15, 51-60. https://doi.org/10.1016/j.jobe.2017.11.005.
  11. Fang, H., Liu, L., Zhang, D. and Wen, M. (2019), "Tuned mass damper on a damped structure", Struct. Control Hlth. Monit., 26(3), e2324. https://doi.org/10.1002/stc.2324.
  12. Hanselman, D.C. and Littlefield, B. (2011), Mastering MATLAB, Prentice Hall Press.
  13. He, K., He, X., Fang, Z., Zheng, X. and Yu, H. (2018), "Study on wind-induced vibration and fatigue life of cable-stayed flexible antenna", IOP Conf. Ser.: Earth Environ. Sci., 128(1), 012119. https://doi.org/10.1088/1755-1315/128/1/012119.
  14. Hori, Y., Kurino, H. and Kurokawa, Y. (2016), "Development of large tuned mass damper with stroke control system for seismic upgrading of existing high-rise building", Int. J. High-Rise Build., 5(3), 167-176. https://doi.org/10.21022/IJHRB.2016.5.3.167.
  15. Huang, Z.W., Hua, X.G., Chen, Z.Q. and Niu, H.W. (2018), "Modeling, testing, and validation of an eddy current damper for structural vibration control", J. Aerosp. Eng., 31(5), 04018063. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000891.
  16. Hussain, R.R., Wasim, M. and Hasan. S. (2016), Introduction to ETABS.
  17. Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng., 113(12), 2382-2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382).
  18. Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Arch. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375.
  19. Jafari, M. and Alipour, A. (2021), "Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review", J. Build. Eng., 33, 101582. https://doi.org/10.1016/j.jobe.2020.101582.
  20. Khodaie, N. (2020), "Vibration control of super-tall buildings using combination of tapering method and TMD system", J. Wind Eng. Indus. Aerodyn., 196, 104031. https://doi.org/10.1016/j.jweia.2019.104031.
  21. Kim, Y.M., Kwak, Y.H., Choi, M.S., Lee, J.J. and Cho, K.S. (2011), "Wind engineering on the new millennium Bridge in South Korea", Procedia Eng., 14, 1472-1479. https://doi.org/10.1016/j.proeng.2011.07.185.
  22. Lin, G.L., Lu, L.Y., Lei, K.T., Liu, K.Y., Ko, Y.Y. and Ju, S.H. (2021), "Experimental study on seismic vibration control of an offshore wind turbine with TMD considering soil liquefaction effect", Marine Struct., 77, 102961. https://doi.org/10.1016/j.marstruc.2021.102961.
  23. Liu, K., Liu, L., Zhu, Q., Liu, Y. and Zhou, F. (2021, December), "Dynamic testing and numerical simulation of human-induced vibration of cantilevered floor with tuned mass dampers", Struct., 34, 1475-1488. https://doi.org/10.1016/j.istruc.2021.08.079.
  24. Liu, Y., Wang, K., Mercan, O., Chen, H. and Tan, P. (2020), "Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures", Eng. Struct., 211, 110486. https://doi.org/10.1016/j.engstruct.2020.110486.
  25. Losanno, D., Palumbo, F., Calabrese, A., Barrasso, T. and Vaiana, N. (2022), "Preliminary investigation of aging effects on recycled rubber fiber reinforced bearings (RR-FRBs)", J. Earthq. Eng., 26(10), 5407-5424. https://doi.org/10.1080/13632469.2021.1871683.
  26. Lu, X. and Chen, J. (2011), "Mitigation of wind-induced response of Shanghai Center Tower by tuned mass damper", Struct. Des. Tall Spec. Build., 20(4), 435-452. https://doi.org/10.1002/tal.659.
  27. Lu, X., Li, P., Guo, X., Shi, W. and Liu, J. (2014), "Vibration control using ATMD and site measurements on the Shanghai World Financial Center Tower", Struct. Des. Tall Spec. Build., 23(2), 105-123. https://doi.org/10.1002/tal.1027.
  28. Lu, X., Zhang, Q., Weng, D., Zhou, Z., Wang, S., Mahin, S.A., ... & Qian, F. (2017), "Improving performance of a super tall building using a new eddy-current tuned mass damper", Struct. Control Hlth. Monit., 24(3), e1882. https://doi.org/10.1002/stc.1882.
  29. Lu, Z., Huang, B., Zhang, Q. and Lu, X. (2018), "Experimental and analytical study on vibration control effects of eddy-current tuned mass dampers under seismic excitations", J. Sound Vib., 421, 153-165.https://doi.org/10.1016/j.jsv.2017.10.035.
  30. Mortezaie, H. and Zamanian, R. (2021), "Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD", Struct. Eng. Mech., 77(6), 721-734. https://doi.org/10.12989/sem.2021.77.6.721.
  31. Nakai, T., Kurino, H., Yaguchi, T. and Kano, N. (2019), "Control effect of large tuned mass damper used for seismic retrofitting of existing high-rise building", JPN Arch. Rev., 2(3), 269-286. https://doi.org/10.1002/2475-8876.12100.
  32. Pavic, A. and Willford, M. (2005), "Vibration serviceability of posttensioned concrete floors", Post-Tensioned Concrete Floors Design Handbook, Appendix G, Technical Report 43.
  33. Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  34. Qu, W.L., Chen, Z.H. and Xu, Y.L. (2001), "Dynamic analysis of wind-excited truss tower with friction dampers", Comput. Struct., 79(32), 2817-2831. https://doi.org/10.1016/S0045-7949(01)00151-1.
  35. Shariatmadar, H. and Razavi, H.M. (2014), "Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method", Struct. Eng. Mech., 51(4), 547-564. https://doi.org/10.12989/sem.2014.51.4.547.
  36. Shu, Z., Li, S., Zhang, J. and He, M. (2017), "Optimum seismic design of a power plant building with pendulum tuned mass damper system by its heavy suspended buckets", Eng. Struct., 136, 114-132. https://doi.org/10.1016/j.engstruct.2017.01.010.
  37. Simiu, E. and Yeo, D.H. (2019), Wind Effects on Structures: Modern Structural Design for Wind, John Wiley & Sons.
  38. Sone, T., Ogino, K., Kamoshita, N., Muto, K., Ide, Y., Murata, K., ... & Yamamoto, M. (2019), "Experimental verification of a tuned mass damper system with two-phase support mechanism", JPN Arch. Rev., 2(3), 250-258. https://doi.org/10.1002/2475-8876.12095.
  39. Takewaki, I. (2015), "Innovative base-isolated building with large mass-ratio TMD at basement for greater earthquake resilience", Technical Articles, 1, 9. https://doi.org/10.1186/s40984-015-0007-6.
  40. Taniguchi, T., Der Kiureghian, A. and Melkumyan, M. (2008), "Effect of tuned mass damper on displacement demand of base-isolated structures", Eng. Struct., 30(12), 3478-3488. https://doi.org/10.1016/j.engstruct.2008.05.027.
  41. Tuan, A.Y. and Shang, G.Q. (2014), "Vibration control in a 101- storey building using a tuned mass damper", J. Appl. Sci. Eng., 17(2), 141-156. https://doi.org/10.6180/jase.2014.17.2.05.
  42. Vaiana, N., Losanno, D. and Ravichandran, N. (2021), "A novel family of multiple springs models suitable for biaxial rate-independent hysteretic behavior", Comput. Struct., 244, 106403. https://doi.org/10.1016/j.compstruc.2020.106403.
  43. Vaiana, N., Sessa, S. and Rosati, L. (2021), "A generalized class of uniaxial rate-independent models for simulating asymmetric mechanical hysteresis phenomena", Mech. Syst. Signal Pr., 146, 106984.https://doi.org/10.1016/j.ymssp.2020.106984.
  44. Vaiana, N., Sessa, S., Marmo, F. and Rosati, L. (2018), "A class of uniaxial phenomenological models for simulating hysteretic phenomena in rate-independent mechanical systems and materials", Nonlin. Dyn., 93, 1647-1669. https://doi.org/10.1007/s11071-018-4282-2.
  45. Vaiana, N., Spizzuoco, M. and Serino, G. (2017), "Wire rope isolators for seismically base-isolated lightweight structures: Experimental characterization and mathematical modeling", Eng. Struct., 140, 498-514. https://doi.org/10.1016/j.engstruct.2017.02.057.
  46. Wang, D., Tse, T. K., Zhou, Y. and Li, Q. (2015), "Structural performance and cost analysis of wind-induced vibration control schemes for a real super-tall building", Struct. Infrastr. Eng., 11(8), 990-1011. https://doi.org/10.1080/15732479.2014.925941.
  47. Warburton, G.B. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.
  48. Xiang, P. and Nishitani, A. (2015), "Optimum design and application of non-traditional tuned mass damper toward seismic response control with experimental test verification", Earthq. Eng. Struct. Dyn., 44(13), 2199-2220. https://doi.org/10.1002/eqe.2579.
  49. Yang, Y., Dai, W. and Liu, Q. (2015), "Design and implementation of two-degree-of-freedom tuned mass damper in milling vibration mitigation", J. Sound Vib., 335, 78-88. https://doi.org/10.1016/j.jsv.2014.09.032.
  50. Yang, Y., Munoa, J. and Altintas, Y. (2010), "Optimization of multiple tuned mass dampers to suppress machine tool chatter", Int. J. Mach. Tool. Manuf., 50(9), 834-842. https://doi.org/10.1016/j.ijmachtools.2010.04.011.
  51. Zhu, Q., Liu, K., Liu, L., Du, Y. and Zivanovic, S. (2020), "Experimental and numerical analysis on serviceability of cantilevered floor based on human-structure interaction", J. Constr. Steel Res., 173, 106184. https://doi.org/10.1016/j.jcsr.2020.106184.