Acknowledgement
The authors express their gratitude to the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. M. I. Sayyed and S. Hashim gratefully acknowledge Universiti Teknologi Malaysia for providing Prominent Visiting Researcher Scheme (RJ3000.7113.3F000) under the Department Deputy of Vice-Chancellor (Research and Innovation) initiatives.
References
- P. Yuan, D. Tan, F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci. 112-113 (2015) 75-93, https://doi.org/10.1016/j.clay.2015.05.001.
- S.A. Konnova, I.R. Sharipova, T.A. Demina, Y.N. Osin, D.R. Yarullina, O.N. Ilinskaya, Y.M. Lvov, R.F. Fakhrullin, Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes, Chem. Commun. 49 (2013) 4208-4210, https://doi.org/10.1039/C2CC38254G.
- K.A.M.S.E. E.G Kovaleva, A.M. AbuEl-soad, M.I. Sayyed, Modified halloysite minerals for radiation shielding purposes, J Radiat Res Appl Sci (2020), https://doi.org/10.1080/16878507.2019.1699680.
- H.S. Gokce, B.C. Ozturk, N.F. Cam, O. Andic-Cakir, Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture, Cem. Concr. Compos. 92 (2018) 56-69, https://doi.org/10.1016/j.cemconcomp.2018.05.015.
- S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application, Radiat. Phys. Chem. 160 (2019) 41-47, https://doi.org/10.1016/j.radphyschem.2019.03.018.
- Bunyamin Aygun,"Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique, Radiation Physics and Chemistry 188 (2021) 109630.
- K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses, Optik (Stuttg) 251 (2022) 168436, https://doi.org/10.1016/j.ijleo.2021.168436.
- B. Aygun, High alloyed new stainless steel shielding material for gamma and fast neutron radiation, Nucl. Eng. Technol. 52 (2020) 647-653, https://doi.org/10.1016/j.net.2019.08.017.
- M. Dong, X. Xue, H. Yang, D. Liu, C. Wang, Z. Li, A novel comprehensive sutilisation of vanadium slag: as gamma ray shielding material, J. Hazard Mater. 318 (2016) 751-757, https://doi.org/10.1016/j.jhazmat.2016.06.012.
- M. Dong, X. Xue, A. Kumar, H. Yang, M.I. Sayyed, S. Liu, E. Bu, A novel method of sutilisation of hot dip sgalvanising slag using the heat waste from itself for protection from radiation, J. Hazard Mater. 344 (2018) 602-614, https://doi.org/10.1016/j.jhazmat.2017.10.066.
- K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Impact of Bi2O3 modifier concentration on barium-zincborate glasses: physical, structural, elastic, and radiation-shielding properties, The European Physical Journal Plus 136 (2021) 116, https://doi.org/10.1140/epjp/s13360-020-01056-6.
- K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: physical, structural, optical, elastic, and radiation-shielding properties, Radiat. Phys. Chem. 188 (2021), 109617, https://doi.org/10.1016/j.radphyschem.2021.109617.
- S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
- A.T. Sensoy, H.S. Gokce, Simulation and soptimisation of gamma-ray linear attenuation coefficients of barite concrete shields, Construct. Build. Mater. 253 (2020), 119218, https://doi.org/10.1016/j.conbuildmat.2020.119218.
- K.A. Mahmoud, O.L. Tashlykov, A.F. el Wakil, H.M.H. Zakaly, I.E. el Aassy, Investigation of radiation shielding properties for some building materials reinforced by basalt powder investigation of radiation shielding properties for some building materials reinforced by basalt powder, AIP Conf. Proc. (2019), 020036.
- A.M. Zeyad, I.Y. Hakeem, M. Amin, B.A. Tayeh, I.S. Agwa, Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding, J. Build. Eng. 58 (2022), 104960, https://doi.org/10.1016/j.jobe.2022.104960.
- L. Luo, Z. Chen, Q. Tao, L. Xie, D. Jin, Z. Li, D. Deng, Effects of high temperatures on the splitting tensile strength and gamma ray shielding performance of radiation shielding concrete, Construct. Build. Mater. 343 (2022), 127953, https://doi.org/10.1016/j.conbuildmat.2022.127953.
- A.M. Zayed, M.A. Masoud, M.G. Shahien, H.S. Gokce, K. Sakr, W.A. Kansouh, A.M. El-Khayatt, Physical, mechanical, and radiation attenuation properties of serpentine concrete containing boric acid, Construct. Build. Mater. 272 (2021), 121641, https://doi.org/10.1016/j.conbuildmat.2020.121641.
- S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.V. Arun Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district, India, Radiat. Phys. Chem. 196 (2022), 110108, https://doi.org/10.1016/j.radphyschem.2022.110108.
- M. Yilmaz, M.E. Pekdemir, E. Ozen Oner, Evaluation of Pb doped Poly(lactic acid) (PLA)/Poly(ethylene glycol) (PEG) blend composites regarding physicochemical and radiation shielding properties, Radiat. Phys. Chem. 202 (2023), 110509, https://doi.org/10.1016/j.radphyschem.2022.110509.
- P. Wang, X. Tang, H. Chai, D. Chen, Y. Qiu, Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm 2 O 3/polyimide gamma ray/neutron shielding material, Fusion Eng. Des. 101 (2015) 218-225, https://doi.org/10.1016/j.fusengdes.2015.09.007.
- V. Harish, N. Nagaiah, T.N. Prabhu, K.T. Varughese, Preparation and scharacterisation of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications, J. Appl. Polym. Sci. 112 (2009) 1503-1508, https://doi.org/10.1002/app.29633.
- M. Dong, X. Xue, H. Yang, Z. Li, Highly cost-effective shielding composite made from vanadium slag and boron-rich slag and its properties, Radiat. Phys. Chem. 141 (2017) 239-244, https://doi.org/10.1016/j.radphyschem.2017.07.023.
- S.A. Gursal, N. Mehboob, B. Ahmed, M.S. Mehmood, On the neutron shielding efficacy of flexible silicone infused with CdO nanoparticles, Radiat. Phys. Chem. 202 (2023), 110555, https://doi.org/10.1016/j.radphyschem.2022.110555.
- S. Kim, Y. Ahn, S.H. Song, D. Lee, Tungsten nanoparticle anchoring on boron nitride nanosheet-based polymer nanocomposites for complex radiation shielding, Compos. Sci. Technol. 221 (2022), 109353, https://doi.org/10.1016/j.compscitech.2022.109353.
- G.A.M. Amin, M.H. Abd-El Salam, Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles, Mater. Res. Express 1 (2014), 025024, https://doi.org/10.1088/2053-1591/1/2/025024.
- N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, Effect of particle size, filler loadings and x-ray tube voltage on the transmitted x-ray transmission in tungsten oxide-epoxy composites, Appl. Radiat. Isot. 71 (2013) 62-67, https://doi.org/10.1016/j.apradiso.2012.09.012.
- R. Li, Y. Gu, Y. Wang, Z. Yang, M. Li, Z. Zhang, Effect of particle size on gamma radiation shielding property of gadolinium oxide dispersed epoxy resin matrix composite, Mater. Res. Express 4 (2017), 035035, https://doi.org/10.1088/2053-1591/aa6651.
- M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi, A.R. Rashad, R.M. El-Sharkawy, A.A. Thabet, Fabrication, scharacterisation and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites, Radiat. Phys. Chem. 145 (2018) 160-173, https://doi.org/10.1016/j.radphyschem.2017.10.017.
- X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, 2003. Version 5, La-Ur-03-1987. II.
- M.I. Sayyed, E. Hannachi, K.A. Mahmoud, Y. Slimani, Synthesis of different (RE) BaCuO ceramics, study their structural properties, and tracking their radiation protection efficiency using Monte Carlo simulation, Mater. Chem. Phys. 276 (2022), 125412, https://doi.org/10.1016/j.matchemphys.2021.125412.
- M.I. Sayyed, M.Y. Hanfi, K.A. Mahmoud, A. Abdelaziem, Theoretical Investigation of the radiation-protection properties of the CBS glass family, Optik 258 (2022), 168851, https://doi.org/10.1016/j.ijleo.2022.168851.
- E. Hannachi, K.A. Mahmoud, M.I. Sayyed, Y. Slimani, Effect of sintering conditions on the radiation shielding characteristics of YBCO superconducting ceramics, J. Phys. Chem. Solid. 164 (2022), 110627, https://doi.org/10.1016/j.jpcs.2022.110627.
- E. Hannachi, M.I. Sayyed, A.H. Almuqrin, K.G. Mahmoud, Study of the structure and radiation-protective properties of yttrium barium copper oxide ceramic doped with different oxides, J. Alloys Compd. 885 (2021), 161142, https://doi.org/10.1016/j.jallcom.2021.161142.
- P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped Alkali boro-tellurite glasses, Radiat. Phys. Chem. 189 (2021), 109741, https://doi.org/10.1016/j.radphyschem.2021.109741.
- A.S. Abouhaswa, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Direct influence of mercury oxide on structural, optical and radiation shielding properties of a new borate glass system, Ceram. Int. 46 (2020) 17978-17986, https://doi.org/10.1016/j.ceramint.2020.04.112.
- M.I. Sayyed, M.H.M. Zaid, N. Effendy, K.A. Matori, H.A.A. Sidek, E. Lacomme, K.A. Mahmoud, M.M. AlShammari, The influence of PbO and Bi2O3 on the radiation shielding and elastic features for different glasses, J. Mater. Res. Technol. 9 (2020) 8429-8438, https://doi.org/10.1016/j.jmrt.2020.05.113.
- P. Luo, Y. Zhao, B. Zhang, J. Liu, Y. Yang, J. Liu, Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes, Water Res. 44 (2010) 1489-1497, https://doi.org/10.1016/j.watres.2009.10.042.
- P. Maity, S.v. Kasisomayajula, V. Parameswaran, S. Basu, N. Gupta, Improvement in surface degradation properties of polymer composites due to preprocessed nanometric alumina fillers, IEEE Trans. Dielectr. Electr. Insul. 15 (2008) 63-72, https://doi.org/10.1109/T-DEI.2008.4446737.
- M.J.R. Aldhuhaibat, M.S. Amana, N.J. Jubier, A.A. Salim, Improved gamma radiation shielding traits of epoxy composites: evaluation of mass attenuation coefficient, effective atomic and electron number, Radiat. Phys. Chem. 179 (2021), 109183, https://doi.org/10.1016/j.radphyschem.2020.109183.
- Y. Hou, M. Li, Y. Gu, Z. Yang, R. Li, Z. Zhang, Gamma ray shielding property of tungsten powder modified continuous basalt fiber reinforced epoxy matrix composites, Polym. Compos. 39 (2018) E2106, https://doi.org/10.1002/pc.24469. -E2115.
- Aljawhara H. Almuqrin, M. I. Sayyed, Radiation shielding characterizations and investigation of TeO2-WO3-Bi2O3 and TeO2-WO3-PbO glasses, Applied Physics A (2021) 127:190.
- I.S. Mahmoud, Shams A.M. Issa, Yasser B. Saddeek, H.O. Tekin, Ozge Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, Reda Elsaman,Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceramics International 45 (2019) 14058-14072. https://doi.org/10.1016/j.ceramint.2019.04.105
- Y. Al-Hadeethi, M.I. Sayyed, Radiation attenuation properties of Bi2O3- -Na2O- V2O5- TiO2-TeO2 glass system using Phy-X / PSD software, Ceramics international 46 (2020) 4795-4800. https://doi.org/10.1016/j.ceramint.2019.10.212