DOI QR코드

DOI QR Code

Impedance investigation of the surface film formed on aluminum alloy exposed to nuclear reactor emergency core coolant

  • Junlin Huang (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University) ;
  • Derek Lister (UNB Nuclear Group, Department of Chemical Engineering, University of New Brunswick) ;
  • Xiaoliang Zhu (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University) ;
  • Shunsuke Uchida (Japan Atomic Energy Agency) ;
  • Qinglan Xu (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China)
  • 투고 : 2022.09.30
  • 심사 : 2023.01.15
  • 발행 : 2023.04.25

초록

A method was proposed for in-situ evaluating the thickness and resistivity of the oxide/hydroxide film formed on the surface of aluminum alloy exposed to sump water formed in the containment after a loss-of-coolant accident. The evaluation entailed fitting a model for the film impedance, which has film thickness and other variables describing the resistivity profile of the film along its thickness direction as fitting parameters, to the practically measured electrochemical impedance data. The obtained resistivity profiles implied that the films formed at pHs25℃ 7, 8, 9, 10, and 11 all had a duplex structure; compared to the outer layer in contact with the solution, the inner layer of the film had a much higher resistivity and was inferred to be denser and provide most of the protectiveness of the film. Both the thickness and the total resistance of the film decreased with the increasing solution pH25℃, suggesting that the films formed in more alkaline solutions had less protectiveness against corrosion, consistent with the increasing aluminum alloy corrosion rates previously identified.

키워드

과제정보

We acknowledge the National Natural Science Foundation of China (52106003, 51676035) and the Collaborative Grant by the National Sciences and Engineering Research Council of Canada and the CANDU Owners Group (CRDPJ 364672-08) for support.

참고문헌

  1. Westinghouse Electric Company LLC, AP1000 Pre-construction Safety Report, Westinghouse Electric Company LLC, 2009. UKP-GW-GL-732 (revision 2), https://namrc.co.uk/wp-content/uploads/2011/04/AP1000-safety-report.pdf.
  2. S. Guo, J.J. Leavitt, X. Zhou, E. Lahti, J. Zhang, Corrosion of aluminium alloy 1100 in post-LOCA solutions of a nuclear reactor, RSC Adv. 6 (2016) 44119-44128, https://doi.org/10.1039/c6ra07440e.
  3. M. Edwards, J. Semmler, D. Guzonas, H. Chen, A. Toor, S. Hoendermis, Aluminum corrosion product release kinetics, Nucl. Eng. Des. 288 (2015) 163-174. https://doi.org/10.1016/j.nucengdes.2015.03.006
  4. J. Zhang, M. Klasky, B.C. Letellier, The aluminium chemistry and corrosion in alkaline solutions, J. Nucl. Mater. 384 (2009) 175-189, https://doi.org/10.1016/j.jnucmat.2008.11.009.
  5. K.J. Howe, L. Mitchell, S. Kim, E.D. Blandford, E.J. Kee, Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part I - aluminum, Nucl. Eng. Des. 292 (2015) 296-305, https://doi.org/10.1016/j.nucengdes.2014.11.021.
  6. D. Wang, A. Leong, Q. Yang, J. Zhang, Corrosion behavior of aluminum alloy in simulated nuclear accident environments regarding the chemical effects in GSI-191, Nucl. Eng. Technol. (2022), https://doi.org/10.1016/j.net.2022.06.029.
  7. C.B. Bahn, K.E. Kasza, W.J. Shack, K. Natesan, P. Klein, Evaluation of precipitates used in strainer head loss testing: Part II. Precipitates by in situ aluminum alloy corrosion, Nucl. Eng. Des. 241 (5) (2011) 1926-1936, https://doi.org/10.1016/j.nucengdes.2011.01.004.
  8. J. Piippo, T. Laitinen, P. Sirkia, Corrosion behaviour of zinc and aluminium in simulated nuclear accident environments, Finnish Centre for Radiation and Nuclear Safety, STUK-YTO-TR 123 (1997). https://inis.iaea.org/search/search.aspx?orig_q=RN:28036009.
  9. N.H. Giskeodegard, O. Hunderi, K. Nisancioglu, Simultaneous ellipsometric and chronoamperometric study of barrier aluminium oxide growth and dissolution in acetate buffer, J. Solid State Electrochem. 19 (2015) 3473-3483, https://doi.org/10.1007/s10008-015-2878-8.
  10. Z. Lu, D.D. Macdonald, Transient growth and thinning of the barrier oxide layer on iron measured by real-time spectroscopic ellipsometry, Electrochim. Acta 53 (2008) 7696-7702, https://doi.org/10.1016/j.electacta.2008.05.021.
  11. S. Chakri, A.N. Patel, I. Frateur, F. Kanoufi, E.M.M. Sutter, T.T. Mai Tran, B. Tribollet, V. Vivier, Imaging of a thin oxide film formation from the combination of surface reflectivity and electrochemical methods, Anal. Chem. 89 (2017) 5303-5310, https://doi.org/10.1021/acs.analchem.6b04921.
  12. J. Huang, D. Lister, S. Uchida, L. Liu, The corrosion of aluminium alloy and release of intermetallic particles in nuclear reactor emergency core coolant: implications for clogging of sump strainers, Nucl. Eng. Technol. 51 (5) (2019) 1345-1354, https://doi.org/10.1016/j.net.2019.02.012.
  13. J. Huang, D. Lister, S. Uchida, The corrosion of aluminium alloy in containment after a loss-of-coolant accident, in: 21st International Conference on Water Chemistry in Nuclear Reactor Systems, September, 2018. San Francisco, California, USA.
  14. J. Huang, D. Lister, S. Uchida, The corrosion of aluminum alloy and release of hydrogen in nuclear reactor emergency core coolant: implications for deflagration and explosion risk, J. Nuclear Eng. Design. 359 (110458) (2020) 1-14, https://doi.org/10.1016/j.nucengdes.2019.110458.
  15. A.E. Lane, T.S. Andreychek, W.A. Byers, R.J. Jacko, E.J. Lahoda, R.D. Reid, Evaluation of Post-accident Chemical Effects in Containment Sump Fluids to Support GSI-191, Westinghouse Electric Company LLC, WCAP-16530-NP-A, 2008. https://www.nrc.gov/docs/ML0811/ML081150379.pdf.
  16. J. Dallman, B. Letellier, J. Garcia, J. Madrid, W. Roesch, D. Chen, K. Howe, L. Archuleta, F. Sciacca, B.P. Jain, Integrated chemical effects test project: consolidated data report. U.S. Nuclear Regulatory Commission, NUREG/CR-6914. https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6914/, 2006.
  17. T.S. Andreychek, Test Plan: Characterization of Chemical and Corrosion Effects Potentially Occurring inside a PWR Containment Following a LOCA, Westinghouse Electric Company LLC, 2005, pp. 1-51.
  18. M.E. Orazem, Nadine Pebere, Tribollet Bernard, Enhanced graphical representation of electrochemical impedance data, J. Electrochem. Soc. 153 (4) (2006) B129-B136, https://doi.org/10.1149/1.2168377.
  19. V.M. Huang, Vincent Vivier, Mark E. Orazem, Nadine Pebere, Tribollet Bernard, The apparent constant-phase-element behavior of an ideally polarized blocking electrode: a global and local impedance analysis, J. Electrochem. Soc. 154 (2) (2007) C81-C88, https://doi.org/10.1149/1.2398882.
  20. A.-T. Tran, F. Huet, K. Ngo, P. Rousseau, Artefacts in electrochemical impedance measurement in electrolytic solutions due to the reference electrode, Electrochim. Acta 56 (23) (2011) 8034-8039, https://doi.org/10.1016/j.electacta.2010.12.088.
  21. T. Barres, B. Tribollet, O. Stephan, H. Montigaud, M. Boinet, Y. Cohin, Characterization of the porosity of silicon nitride thin layers by electrochemical impedance spectroscopy, Electrochim. Acta 227 (2017) 1-6, https://doi.org/10.1016/j.electacta.2017.01.008.
  22. M. Benoit, C. Bataillon, B. Gwinner, F. Miserque, M.E. Orazem, Carlos M. Sanchez-Sanchez, Tribollet Bernard, Vincent Vivier, Comparison of different methods for measuring the passive film thickness on metals, Electrochim. Acta 201 (2016) 340-347, https://doi.org/10.1016/j.electacta.2015.12.173.
  23. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys. 9 (1941) 341-351, https://doi.org/10.1063/1.1750906.
  24. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films. I. Theory, J. Electrochem. Soc. 157 (12) (2010) C452-C457, https://doi.org/10.1149/1.3499564.
  25. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films. II. Applications, J. Electrochem. Soc. 157 (12) (2010) C458-C463, https://doi.org/10.1149/1.3499565.
  26. Y. Chen, N.G. Rudawski, E. Lambers, M.E. Orazem, Applications of impedance spectroscopy and surface analysis to obtain oxide film thickness, J. Electrochem. Soc. 164 (9) (2017) C563-C573, https://doi.org/10.1149/2.1061709jes.
  27. A.C. Harkness, L. Young, High resistance anodic oxide films on aluminium, Can. J. Chem. 44 (1966) 2409-2413, https://doi.org/10.1139/v66-363.
  28. J. Bessone, C. Mayer, K. Juttner, W.J. Lorenz, AC-impedance measurements on aluminium barrier type oxide films, Electrochim. Acta 28 (2) (1983) 171-175, https://doi.org/10.1016/0013-4686(83)85105-6.
  29. J. Hitzig, K. Juttner, W.J. Lorenz, W. Paatsch, AC-impedance measurements on porous aluminium oxide films, Corrosion Sci. 24 (11/12) (1984) 945-952, https://doi.org/10.1016/0010-938X(84)90115-X.
  30. Pyun Su-II, S. Moon, Corrosion mechanism of pure aluminium in aqueous alkaline solution, J. Solid State Electrochem. 4 (5) (2000) 267-272, https://doi.org/10.1007/s100080050203.
  31. Y. Li, H. Shimada, M. Sakairi, K. Shigyo, H. Takahashi, M. Seo, Formation and breakdown of anodic oxide films on aluminum in boric acid/borate solutions, J. Electrochem. Soc. 144 (3) (1997) 866-876, https://doi.org/10.1149/1.1837501.
  32. M. Urquidi-Macdonald, S. Real, D.D. Macdonald, Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data. II. Transformations in the complex plane, J. Electrochem. Soc. 133 (10) (1986) 2018-2024, https://doi.org/10.1149/1.2108332.
  33. R. Bosch, Electrochemical impedance spectroscopy for the detection of stress corrosion cracks in aqueous corrosion systems at ambient and high temperature, Corrosion Sci. 47 (1) (2005) 125-143, https://doi.org/10.1016/j.corsci.2004.05.018.
  34. G.R.T. Schueller, S.R. Taylor, E.E. Hajcsar, Evaluation of natural oxides on aluminum in neutral borate electrolyte, J. Electrochem. Soc. 139 (10) (1992) 2799-2805, https://doi.org/10.1149/1.2068982.
  35. J.O.'M. Bockris, LjV. Minevski, On the mechanism of the passivity of aluminum and aluminum alloys, J. Electroanal. Chem. 349 (1-2) (1993) 375-414, https://doi.org/10.1016/0022-0728(93)80186-L.
  36. T. Hurlen, A.T. Haug, Corrosion and passive behavior of aluminium in weakly alkaline solution, Electrochim. Acta 29 (8) (1984) 1133-1138, https://doi.org/10.1016/0013-4686(84)87167-4.
  37. T. Hurlen, A.T. Haug, G. Salomonsen, Backscattering spectrometry of oxide films formed on aluminium in weakly alkaline solutions, Electrochim. Acta 29 (8) (1984) 1161-1162, https://doi.org/10.1016/0013-4686(84)87170-4.
  38. J.P. Gustafsson, Visual MINTEQ Version 3.1, 2018. https://vminteq.lwr.kth.se.
  39. C.B. Bahn, K.E. Kasza, W.J. Shack, K. Natesan, P. Klein, Evaluation of precipitates used in strainer head loss testing: part III. Long-term aluminum hydroxide precipitation tests in borated water, Nucl. Eng. Des. 241 (2011) 1914-1925, https://doi.org/10.1016/j.nucengdes.2010.10.013.
  40. B. Tagirov, J. Schott, J.C. Harrichoury, J. Escalier, Experimental study of the stability of aluminate-borate complexes in hydrothermal solutions, Geochem. Cosmochim. Acta 68 (2004) 1333-1345, https://doi.org/10.1016/j.gca.2003.08.018.
  41. S. Salvi, G.S. Pokrovski, J. Schott, Experimental investigation of aluminium-silica aqueous complexing at 300℃, Chem. Geol. 151 (1998) 51-67, https://doi.org/10.1016/S0009-2541(98)00070-9.