DOI QR코드

DOI QR Code

Performance evaluation of plasma nitrided 316L stainless steel during long term high temperature sodium exposure

  • Akash Singh (Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research) ;
  • R. Thirumurugesan (Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research) ;
  • S. Krishnakumar (Reactor Design and Technology Group, Indira Gandhi Centre for Atomic Research Centre) ;
  • Revati Rani (Materials Science Group, Indira Gandhi Centre for Atomic Research) ;
  • S. Chandramouli (Reactor Design and Technology Group, Indira Gandhi Centre for Atomic Research Centre) ;
  • P. Parameswaran (Formerly with Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research) ;
  • R. Mythili (Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research)
  • Received : 2022.02.14
  • Accepted : 2022.12.16
  • Published : 2023.04.25

Abstract

Enhancement of wear resistance of components used in fast reactors is necessary for long service life of the components. Plasma nitriding is a promising surface modification technology to impart high hardness and improved wear resistance of various steel components. This study discusses the characterization of chrome nitrided SS316L casing ring used in secondary sodium pump of fast breeder reactor and its stability under long term sodium exposure. Microstructural and hardness analysis showed that stress relieved component could be chrome nitrided successfully to a thickness of about 100 ㎛. Assessment of in-sodium performance of the chrome nitrided casing ring subjected to long term exposure up to 5000h at 550℃, showed retention of chrome nitrided layer with a case depth almost similar to that before sodium exposure. A slight decrease in the hardness was observed due to prolonged high temperature sodium exposure. Tribological studies indicate very low coefficient of friction indicating the retention of good wear resistance of the coating even after long term sodium exposure.

Keywords

Acknowledgement

The authors thank Dr. T. N. Prasanthi for her help in EPMA studies, Dr. Arup Dasgupta, Head, PMD, IGCAR, Dr. S. Raju, former Director, MMG, Dr. R. Divakar, Director, MMG and Dr. B.Venkatraman, Director, IGCAR, for their constant encouragement and motivation in the course of the present work.

References

  1. Hossein Aghajani, Sahand Behrangi, Topics in Mining, Metallurgy and Materials Engineering, Springer International Publishing Switzerland, 2017, ISBN 978-3-319-43067-6, https://doi.org/10.1007/978-3-319-43068-3.
  2. R. Kumar, J. Alphonsa, R. Prakash, K.S. Boob, J. Ghanshyam, P.A. Rayjada, P.M. Raole, S. Mukherjee, Bull Mater Sci 34 (2011) 153-159. https://doi.org/10.1007/s12034-011-0065-9
  3. W. Rembges, W. Oppel, Process control of plasma nitriding and plasma nitrocarburizing in industry, Surface and Coatings Technology 59 (1993) 129-134. https://doi.org/10.1016/0257-8972(93)90069-Z
  4. F. Borgioli, A. Fossati, E. Galvanetto, T. Bacci, Glow-discharge nitriding of AISI 316L austenitic stainless steel: influence of treatment temperature, Surface & Coatings Technology 200 (2005) 2474-2480. https://doi.org/10.1016/j.surfcoat.2004.07.110
  5. David Pye, Practical nitriding and ferritic nitrocarburizing, ASM International, Materials Park Ohio 44073-0002 (2003) pp 77-86.
  6. T. Czerwiec, N. Renevier1, H. Michel, Low-temperature plasma-assisted, Surf. Coating Technology 131 (2000) 267-277. https://doi.org/10.1016/S0257-8972(00)00792-1
  7. L. Donald Smith, Thin-Film Deposition - Principles and Practice, McGraw-Hill,Inc., 1995.
  8. K.T. Rie, Recent advances on plasma diffusion processes, Surface and Coating Technology 112 (1999) 56-62. https://doi.org/10.1016/S0257-8972(98)00747-6
  9. L.F. Zagonel, J. Bettini, R.L.O. Basso, P. Paredez, H. Pinto, C.M. Lepienski, F. Alvarez, Nanosized precipitates in H13 tool steel low temperature plasma nitriding, Surface and Coatings Technology 207 (2012) 72-78. https://doi.org/10.1016/j.surfcoat.2012.05.081
  10. C.K. Jones, S.W. Martin, D.J. Sturgers, M. Hudis, Heat Treatment'73, The Metals Society, 1973, pp. 71-77.
  11. A. Brenner, P. Burkhead, C. harles Jennings, Physical properties of electrodeposited chromium, Journal of Research RP1854, 40 (1948) 31-59 (National Bureau of Standards, U. S. Department of Commerce). https://doi.org/10.6028/jres.040.022
  12. P. Jewbury, Plasma assisted thermal processes, Materials Forum 9 (3) (1986) 179-181.
  13. P. Kuppusami, V.S. Raghunathan, Metals Materials and Processes 3 (3) (1991) 147-174.
  14. H. Torres, M. Varga, K. Adam, M. Rodriguez Ripoll, The role of load on wear mechanisms in high temperature sliding contacts, Wear 364-365 (2016) 73-83. https://doi.org/10.1016/j.wear.2016.06.025
  15. P. Kuppusami, A. Dasgupta, V.S. Raghunathan, J. Iron and Steel Institute of Japan International 42 (2002) 1457.
  16. T. Tamaoki, K. Uemura, A. Okada, Y. Uno, Improvement of razor blade surface integrity by plasma nitriding, in: Proceedings of the 6th International Conference on Leading Edge Manufacturing in 21st Century, 2011. LEM 2011.
  17. D. Yonekura, K. Ozaki, R. Shibahara, I. Lee, R. Murakami, 13th Int. Conference on Fracture, 2013 (China).
  18. Y. Lu, D. Li, H. Ma, X. Liu, M. Wu, J. Hu, Enhanced plasma nitriding efficiency and properties by severe plastic deformation pretreatment for 316L austenitic stainless steel, Journal of Materials Research and Technology 15 (2021) 1742-1746. https://doi.org/10.1016/j.jmrt.2021.08.082
  19. M. G. Pujar Sivai Bharasi, et al., Changes in microstructural and mechanical properties of AISI type 316LN stainless steel and modified 9Cr-1Mo steel on long-term exposure to flowing sodium in a Bi-metallic sodium loop, Metallurgical and Materials Transaction A 46 A (2015) 6065.
  20. M.P. Mishra, H.U. Borgstedt, G. Frees, B. Seith, S.L. Mannan, P. Rodriguez, Microstructural aspects of creep-rupture life of Type 316L(N) stainless steel in liquid sodium environment, J. Nucl. Mater. 200 (1993) 244-255. https://doi.org/10.1016/0022-3115(93)90335-V
  21. S. Hemery, T. Auger, J.L. Courouau, F. Balbaud-Celerier, Liquid metal embrittlement of an austenitic stainless steel in liquid sodium, Corrosion Sci 83 (2014) 1-5. https://doi.org/10.1016/j.corsci.2014.02.031
  22. E. Rolinski, G. Sharp, Controlling Plasma Nitriding of Ferrous Alloys Materials  Performance and Characterization 6 (4) (2017) 698-716.
  23. R. Salvador Barbato, F. Jilberto Ponce, L. Marcelo Jara, S. Jacqueline Cuevas, A. Rodrigo Egana, Study of the effect of temperature on the hardness, grain size and yield in electrodeposition of chromium on 1045 steel, J. Chil. Chem. Soc. 53 (2008) 1.
  24. R.P. Cardoso, C.J. Scheuer, S.F. Brunatto, Low-temperature nitriding kinetics of stainless steel: effect of prior heat treatment, in: Encyclopedia of Iron, Steel, and Their Alloys, vol. 2, Taylor & Francis Group, 2016, pp. 2153-2168.
  25. P. Hidnert, Thermal expansion of electrolytic chromium, J. Research NBS 26 (1941) 81-RP13610.
  26. S.P. Makariewe, N.D. Biriikoff, The influence of dissolved hydrogen on the hardness of electrolytic chromium, Z. Elektrochem. 41 (1935) 623.
  27. E. V: Potter and H. C. Lukens, Hydrogen content of electrolytic chromium and its removal, Metals T ech. 15(January 1948) T .P .2312.
  28. L. Mehr, T.T. Oberg, J. Teres, Fatigue limi t of chromium plated steel, Monthly Rev. Am. Electroplaters Soc. 34 (1947) 1345.
  29. Chromium plating, Bibliography and Correlated Abstract, by M. Kolodney, for War Metallurgy Committee, Information Release No.4, p. 49 (July 1943).
  30. A. Brokman, F.R. Tuler, A study of the mechanisms of ion nitriding by the application of a magnetic field, J. Appl. Phys. 52 (1) (1981) 468.
  31. X. Bingzhang, Z. Yingzhi, Surface Engg 3 (3) (1987) 226.
  32. Elements of Friction Theory and Nanotribology Enrico Gnecco and Ernst Meyer, Cambridge University Press, 2015, ISBN 978-1-107-00623-2.
  33. Pradeep L. Menezes, Kishore, Satish V. Kailas, Michael R. Lovell, Role of surface texture, roughness, and hardness on friction during unidirectional sliding, Tribol Lett41 (2011) 1-15.
  34. Natarajan Jeyaprakash and Che-Hua Yang, Friction, lubrication, and wear" october 2020; from the Edited Volume:Tribology in Materials and Manufacturing- Tribology in Materials and ManufacturingWear, Friction and Lubrication; Edited by Amar Patnaik, Tej Singh and VikasKukshal; DOI: 10.5772/intechopen.93796.