DOI QR코드

DOI QR Code

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jin Sung Kim (Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University Health System, Yonsei University College of Medicine) ;
  • Seungryong Cho (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2022.09.06
  • Accepted : 2022.12.15
  • Published : 2023.04.25

Abstract

The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

Keywords

Acknowledgement

This study is supported in part by the National Research Foundation of Korea Grant NRF-2020R1A2C2011959, the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy of Korean government under grant UM19207RD2, and the National Research Foundation of Korea Grant NRF-2021M3I1A109790911.

References

  1. H. Paganetti, C. Beltran, S. Both, L. Dong, J. Flanz, K. Furutani, C. Grassberger, D.R. Grosshans, A.C. Knopf, J.A. Langendijk, H. Nystrom, K. Parodi, B.W. Raaymakers, C. Richter, G.O. Sawakuchi, M. Schippers, S.F. Shaitelman, B.K.K. Teo, J. Unkelbach, P. Wohlfahrt, T Lomax, Roadmap: Proton therapy physics and biology, Phys. Med. Biol. 66 (5) (2021). 
  2. T.D. Malouff, A. Mahajan, S. Krishnan, C. Beltran, D.S. Seneviratne, D.M. Trifiletti, Carbon ion therapy: a modern review of an emerging technology, Front. Oncol. 10 (82) (2020). 
  3. D.T. Goodhead, Mechanisms for the biological effectiveness of high-LET radiations, J. Radiat. Res. 40 (1999) 1-13.  https://doi.org/10.1269/jrr.40.S1
  4. A. Brown, H. Suit, The centenary of the discovery of the Bragg peak, Radiother. Oncol. 73 (3) (2004) 265-268.  https://doi.org/10.1016/j.radonc.2004.09.008
  5. C. Grassberger, H. Paganetti, Elevated LET components in clinical proton beams, Phys. Med. Biol. 56 (20) (2011) 6677-6691.  https://doi.org/10.1088/0031-9155/56/20/011
  6. A. Besemer, H. Paganetti, B. Bednarz, The clinical impact of uncertainties in the mean excitation energy of human tissues during proton therapy, Phys. Med. Biol. 58 (4) (2013) 887-902.  https://doi.org/10.1088/0031-9155/58/4/887
  7. K. Parodi, J.C. Polf, In vivo range verification in particle therapy, Med. Phys. 45 (11) (2018) 1036-1050.  https://doi.org/10.1002/mp.12764
  8. H. Paganetti, Range uncertainties in proton therapy and the role of Monte Carlo simulations, Phys. Med. Biol. 57 (11) (2012) 99-117.  https://doi.org/10.1088/0031-9155/57/19/6047
  9. U. Schneider, E. Pedroni, A. Lomax, The calibration of CT Hounsfield units for radiotherapy treatment planning, Phys. Med. Biol. 41 (1) (1996) 111-124.  https://doi.org/10.1088/0031-9155/41/1/009
  10. N. Peters, P. Wohlfahrt, C.V. Dahlgren, L. de Marzi, M. Ellerbrock, F. Fracchiolla, J. Free, C. Goma, J. Gora, M.F. Jensen, T. Kajdrowicz, R. Mackay, S. Molinelli, I. Rinaldi, V. Rompokos, D. Siewert, P. van der Tol, X. Vermeren, H. Nystrom, A. Lomax, C. Richter, Experimental assessment of inter-centre variation in stopping-power and range prediction in particle therapy, Radiother. Oncol. 163 (2021) 7-13.  https://doi.org/10.1016/j.radonc.2021.07.019
  11. A. Meijers, J. Free, D. Wagenaar, S. Deffet, A.C. Knopf, J.A. Langendijk, S. Both, Validation of the proton range accuracy and optimization of CT calibration curves utilizing range probing, Phys. Med. Biol. 65 (3) (2020). 
  12. E. Bar, A. Lalonde, G. Royle, H.M. Lu, H. Bouchard, The potential of dual-energy CT to reduce proton beam range uncertainties, Med. Phys. 44 (6) (2017) 2332-2344.  https://doi.org/10.1002/mp.12215
  13. F.K. Faller, S. Mein, B. Ackermann, J. Debus, W. Stiller, A. Mairani, Pre-clinical evaluation of dual-layer spectral computed tomography-based stopping power prediction for particle therapy planning at the Heidelberg Ion Beam Therapy Center, Phys. Med. Biol. 65 (9) (2020). 
  14. P. Wohlfahrt, C. Mohler, C. Richter, S. Greilich, Evaluation of stopping-power prediction by dual- and single-energy computed tomography in an anthropomorphic ground-truth phantom, Int. J. Radiat. Oncol. Biol. Phys. 100 (1) (2018) 244-253.  https://doi.org/10.1016/j.ijrobp.2017.09.025
  15. A.E. Bourque, J.F. Carrier, H. Bouchard, A stoichiometric calibration method for dual energy computed tomography, Phys. Med. Biol. 59 (8) (2014) 2059-2088.  https://doi.org/10.1088/0031-9155/59/8/2059
  16. J.C. Polf, M.M. Mille, S. Mossahebi, H. Chen, P. Maggi, H. Chen-Mayer, Determination of proton stopping power ratio with dual-energy CT in 3D-printed tissue/air cavity surrogates, Med. Phys. 46 (7) (2019) 3245-3253.  https://doi.org/10.1002/mp.13587
  17. M. Simard, E. B€ ar, D. Blais, H. Bouchard, Electron density and effective atomic number estimation in a maximum a posteriori framework for dual-energy computed tomography, Med. Phys. 47 (9) (2020) 4137-4149.  https://doi.org/10.1002/mp.14309
  18. C. Shen, B. Li, L. Chen, M. Yang, Y. Lou, X. Jia, Material elemental decomposition in dual and multi-energy CT via a sparsity-dictionary approach for proton stopping power ratio calculation, Med. Phys. 45 (4) (2018) 1491-1503.  https://doi.org/10.1002/mp.12796
  19. Y. Xie, C. Ainsley, L. Yin, W. Zou, J. McDonough, T.D. Solberg, A. Lin, B.K. Teo, Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration, Phys. Med. Biol. 63 (5) (2018). 
  20. T. Nasmark, J. Andersson, Proton stopping power prediction based on dual-energy CT-generated virtual monoenergetic images, Med. Phys. 48 (9) (2021) 5232-5243.  https://doi.org/10.1002/mp.15066
  21. H. Bethe, J. Ashkin, in: E. Segre, J (Eds.), Experimental Nuclear Physics, Wiley, New York, 1953, p. 253. 
  22. T. Flohr, M. Petersilka, A. Henning, S. Ulzheimer, J. Ferda, B. Schmidt, Photon-counting CT review, Phys. Med. 79 (2020) 126-136.  https://doi.org/10.1016/j.ejmp.2020.10.030
  23. M.J. Willemink, M. Persson, A. Pourmorteza, N.J. Pelc, D. Fleischmann, Photon-counting CT: technical principles and clinical prospects, Radiology 289 (2) (2018) 293-312.  https://doi.org/10.1148/radiol.2018172656
  24. D.F. DeJongh, E.A. Dejongh, V. Rykalin, G. Defillippo, M. Pankuch, A.W. Best, G. Countrakon, K.L. Duffin, N.T. Karonis, C.E. Ordonez, C. Sarosiek, R.W. Schulte, J.R. Winans, A.M. Block, C.L. Hentz, J.S. Welsch, A comparison of proton stopping power measured with proton CT and x-ray CT in fresh postmortem porcine structures, Med. Phys. 48 (12) (2021) 7998-8009.  https://doi.org/10.1002/mp.15334
  25. A. Hammi, S. Koenigm D.C. Weber, B. Poppe, A.J. Lomax, Patient positioning verification for proton therapy using proton radiography, Phys. Med. Biol. 63 (2018) 24. 
  26. M. Martiꠙsikov a, T. Gehrke, S. Berke, G. Arico, O. Jakel, Helium ion beam imaging for image guided ion radiotherapy, Radiat. Oncol. 13 (1) (2018). 
  27. M. Witt, U. Weber, D. Kellner, R. Engenhart-Cabillic, K. Zink, Optimization of the stopping-power-ratio to Hounsfield-value calibration curve in proton and heavy ion therapy, Z. Med. Phys. 25 (3) (2015) 251-263.  https://doi.org/10.1016/j.zemedi.2014.11.001
  28. F.K. Longarino, T. Tessonnier, S. Mein, S.B. Harrabi, J. Debus, W. Stiller, A. Mairani, Dual-layer spectral CT for proton, helium, and carbon ion beam therapy planning of brain tumors, J. Appl. Clin. Med. Phys. 23 (1) (2022).