Acknowledgement
This work is executed in the frame of the scientific theme of Institute of High-Temperature Electrochemistry UB RAS, number FUME-2022-0005, registration number 122020100205-5.
References
- P.N. Haubenre, J.R. Engel, Experience with the molten-salt reactor experiment, Nucl. Appl. Technol. 8 (1970) 118-136. https://doi.org/10.13182/NT8-2-118
- M.W. Rosenthal, P.R. Kasten, R.B. Briggs, Molten-salt reactors-history, status, and potential, Nucl. Appl. Technol. 8 (1970) 107-118. https://doi.org/10.13182/NT70-A28619
- L. Mathieu, D. Heuer, R. Brissot, C. Garzenne, C.L. Brun, D. Lecarpentier, E. Liatard, J.-M. Loiseaux, O. Meplan, E. Merle-Lucotte, A. Nuttin, E. Walle, J. Wilson, The thorium molten salt reactor: moving on from the MSBR, Prog. Nucl. Energy 48 (2006) 664-679. https://doi.org/10.1016/j.pnucene.2006.07.005
- S. Delpech, E. Merle-Lucotte, D. Heuer, M. Allibert, V. Ghetta, C. Le-Brun, X. Doligez, G. Picard, Reactor physic and reprocessing scheme for innovative molten salt reactor system, J. Fluor. Chem. 130 (2009) 11-17. https://doi.org/10.1016/j.jfluchem.2008.07.009
- B.A. Frandsen, S.D. Nickerson, A.D. Clark, A. Solano, R. Baral, J. Williams, J. Neuefeind, M. Memmott, The structure of molten FLiNaK, J. Nucl. Mater. 537 (2020), 152219.
- P. Soucek, F. Lisy, R. Tulackova, J. Uhlir, R. Mraz, Development of electrochemical separation methods in molten LiF-NaF-KF for the molten salt reactor fuel cycle, J. Nucl. Sci. Technol. 42 (12) (2005) 1017-1024. https://doi.org/10.1080/18811248.2005.9711054
- H.O. Nam, A. Bengtson, K. Vцrtler, S. Saha, R. Sakidja, D. Morgan, First-principles molecular dynamics modeling of the molten fluoride salt with Cr solute, J. Nucl. Mater. 449 (2014) 148-157. https://doi.org/10.1016/j.jnucmat.2014.03.014
- V. Sarou-Kanian, A.-L. Rollet, M. Salanne, P.A. Madden, Diffusion coefficients and local structure in basic molten fluorides: in situ NMR measurements and molecular dynamics simulations, Phys. Chem. Chem. Phys. 11 (48) (2009) 11501-11506. https://doi.org/10.1039/b912532a
- L. Langford, N. Winner, A. Hwang, H. Williams, L. Vergari, R.O. Scarlat, M. Asta, Constant-potential molecular dynamics simulations of molten-salt double layers for FLiBe and FLiNaK, J. Chem. Phys. 157 (2022), 094705.
- S. Guo, J. Zhang, W. Wu, W. Zhou, Corrosion in the molten fluoride and chloride salts and materials development for nuclear applications, Prog. Mater. Sci. 97 (2018) 448-487. https://doi.org/10.1016/j.pmatsci.2018.05.003
- M.P. Tosi, F.G. Fumi, Ionic sizes and born repulsive parameters in the NaCl-type alkali halides-II: the generalized Huggins-Mayer form, J. Phys. Chem. Solid. 25 (1964) 45-52. https://doi.org/10.1016/0022-3697(64)90160-X
- L. Pauling, The molecular structure of the tungstosilicates and related compounds, J. Am. Chem. Soc. 51 (1929) 2868-2880. https://doi.org/10.1021/ja01385a002
- J.E. Mayer, Dispersion and polarizability and the van der Waals potential in the alkali halides, J. Chem. Phys. 1 (1933) 270-279. https://doi.org/10.1063/1.1749283
- D.J. Adams, I.R. McDonald, Rigid-ion models of the interionic potential in the alkali halides, J. Phys. C Solid State Phys. 7 (1974) 2761-2775. https://doi.org/10.1088/0022-3719/7/16/009
- K. Meier, A. Laesecke, S. Kabelac, Transport coefficients of the Lennard-Jones model fluid. I. Viscosity, J. Chem. Phys. 121 (2004) 3671-3687. https://doi.org/10.1063/1.1770695
- B.B. Karki, D. Bhattari, L. Stixrude, First-principles calculations of the structural dynamical, and electrical properties of liquid MgO, Phys. Rev. B 73 (2006), 174208.
- J.A. Armstrong, P. Ballone, Computational verification of two universal relations for simple ionic liquids. kinetic properties of a model 2:1 molten salt, J. Phys. Chem. B 115 (2011) 4927-4938. https://doi.org/10.1021/jp200229m
- S. Delpech, E. Merle-Locotte, D. Heuer, M. Allibert, V. Ghetta, C. Le-Brun, X. Doligez, G. Picard, Reactor physic and reprocessing scheme for innovative molten salt reactor system, J. Fluor. Chem. 130 (2009) 11-17. https://doi.org/10.1016/j.jfluchem.2008.07.009
- N. Umesaki, N. Iwamoto, Y. Tsunawaki, H. Ohno, K. Furukawa, Self-diffusion of lithium, sodium, potassium and fluorine in a molten LiF + NaF + KF eutectic mixture, J. Chem. Soc., Faraday Trans. 1: Phys. Chem. Condens. Phases 77 (1981) 169-175.
- A. Rudenko, A. Kataev, O. Tkacheva, Dynamic viscosity of the NaF-KF-NdF3 molten system, Materials 15 (2022) 4884.
- W. Grimes, D. Cuneo, F. Blankenship, G. Keilholtz, et al., Fluid Fuel Reactors, Addison-Weslay Pub. Co., Geneva, 1958.
- K.А. Tasidou, J. Magnusson, T. Munro, M.J. Assael, Reference correlations for the viscosity of molten LiF-NaF-KF, LiF-BeF2, and Li2CO3-Na2CO3-K2CO3, J. Phys. Chem. Ref. Data 48 (2019), 043102.
- M. Salanne, C. Simon, P. Turq, P.A. Madden, Heat-transport properties of molten fluorides: determination from first-principle, J. Fluor. Chem. 130 (2009) 38-44. https://doi.org/10.1016/j.jfluchem.2008.07.013
- J. Wu, J. Wang, H. Ni, G. Lu, J. Yu, Investigation of microscopic structure and ion dynamics in liquid Li(Na, K) eutectic Cl systems by molecular dynamics simulation, Appl. Sci. 8 (2018) 1874.
- K. Igarashi, Y. Okamoto, J. Mochinaga, H. Ohno, X-Ray diffraction study of molten eutectic LiF-NaF-KF mixture, J. Chem. SOC., Faraday Trans. 84 (1988) 4407-4415. https://doi.org/10.1039/f19888404407
- S.T. Lam, Q.-J. Li, J. Mailoa, C. Forsberg, R. Ballinger, J. Li, The Impact of Hydrogen Valence on its Bonding and Transport in Molten Fluoride Salts, in: Electronic Supplementary Material (ESI) for J Mater Chem A, The Royal Society of Chemistry, 2021. https://www.rsc.org/suppdata/d0/ta/d0ta10576g/d0ta10576g1.pdf.
- B. Mignacca, G. Locatelli, Economics and finance of molten salt reactors, Prog. Nucl. Energy 129 (2020), 103503.
- C. Andreades, R.O. Scarlat, L. Dempsey, P. Peterson, Reheat-air Brayton combined cycle power conversion design and performance under nominal ambient conditions, J. Eng. Gas Turbines Power 136 (2014), 062001.
- C.W. Forsberg, Market basis for salt-cooled reactors: dispatchable heat, hydrogen, and electricity with assured peak power capacity, Nucl. Technol. 206 (2020) 1659-1685. https://doi.org/10.1080/00295450.2020.1743628
- M.M. Tylka, J.L. Willit, J. Prakash, M.A. Williamson, Method development for quantitative analysis of actinides in molten salts, J. Electrochem. Soc. 162 (2015). H625-H633. https://doi.org/10.1149/2.0401509jes
- S. Sharma, A.S. Ivanov, C.J. Margulis, A Brief guide to the structure of high-temperature molten salts and key aspects making them different from their low-temperature relatives, the ionic liquids, J. Phys. Chem. B 125 (2021) 6359-6372. https://doi.org/10.1021/acs.jpcb.1c01065
- S.-C. Lee, Y. Zhai, Z. Li, N.P. Walter, M. Rose, B.J. Heuser, Comparative studies of the structural and transport properties of molten salt FLiNaK using the machine-learned neural network and reparametrized classical forcefields, J. Phys. Chem. B 125 (2021) 10562-10570. https://doi.org/10.1021/acs.jpcb.1c05608
- A.E. Galashev, V.P. Skripov, Stability of Lennard-Jones crystal structures in the molecular dynamics model, J. Struct. Chem. 26 (1985) 716-721. https://doi.org/10.1007/BF00773266
- A.E. Galashev, V.P. Skripov, Stability and structure of a two-component crystal using a molecular dynamics model, J. Struct. Chem. 27 (1986) 407-412. https://doi.org/10.1007/BF00751820