DOI QR코드

DOI QR Code

New Monte-Carlo based simulation program suitable for low-energy ions irradiation in pure materials

  • Ghadeer H. Al-Malkawi (Nuclear Engineering Department, Jordan University of Science and Technology) ;
  • Al-Montaser Bellah A. Al-Ajlony (Materials Engineering Department, Al-Balqa Applied University) ;
  • Khaled F. Al-Shboul (Nuclear Engineering Department, Jordan University of Science and Technology) ;
  • Ahmed Hassanein (Center for Materials Under Extreme Environment (CMUXE), School of Nuclear Engineering, Purdue University)
  • Received : 2022.03.18
  • Accepted : 2022.12.05
  • Published : 2023.04.25

Abstract

A new Monte-Carlo-based computer program (RDS-BASIC) is developed to simulate the transport of energetic ions in pure matter. This computer program is utilizing an algorithm that uses detailed numerical solutions for the classical scattering integral for evaluating the outcomes of the binary collision processes. This approach is adopted by several prominent similar simulation programs and is known to provide results with higher accuracy compared to other approaches that use approximations to shorten the simulation time. Furthermore, RDS-BASIC simulation program contains special methods to reduce the displacement energy threshold of surface atoms. This implementation is found essential for accurate simulation results for sputtering yield in the case of very low energy ions irradiation (near sputtering energy threshold) and also successfully solve the problem of simultaneously obtaining an acceptable number of atomic displacements per incident ions. Results of our simulation for several irradiation systems are presented and compared with their respective TRIM (SRIM-2013) and the state-of-the-art SDTrimSP simulation results. Our sputtering simulation results were also compared with available experimental data. The simulation execution time for these different simulation programs has also been compared.

Keywords

Acknowledgement

The authors of this article acknowledge with deep gratitude the help of Dr. Andreas Mutzke for granting us access to his latest version of the simulation program SDTrimSP (ver. 6.05).

References

  1. D.E. Harrison, D.S. Greiling, Computer studies of xenon-ion ranges in a finite-temperature tungsten lattice, J. Appl. Phys. 38 (1967) 3200-3211. https://doi.org/10.1063/1.1710090
  2. Y. Qiang, W. Chenbin, L. Wei, Monte Carlo modeling on primary damage generation induced by ions in solid materials, Nucl. Saf. Simulat. 7 (2016) 88-96.
  3. F. Schiettekatte, Fast Monte Carlo for ion beam analysis simulations, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 1880-1885. https://doi.org/10.1016/j.nimb.2007.11.075
  4. J.P. Biersack, Computer simulations of sputtering, Nucl. Instrum. Methods Phys. Res. B 27 (1987) 21-36. https://doi.org/10.1016/0168-583X(87)90005-X
  5. J.P. Biersack, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. B 174 (1980) 13.
  6. W. Moller, W. Eckstein, TRIDYN - binary collision simulation of atomic collisions and dynamic composition changes in solids, Comput. Phys. Comun. 51 (1988) 14.
  7. J.L. Whitton, W.O. Hofer, U. Littmark, M. Braun, B. Emmoth, Influence of surface morphology on the angular distribution and total yield of copper sputtered by energetic argon ions, Appl. Phys. Lett. 36 (1980) 531-533. https://doi.org/10.1063/1.91568
  8. J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. B 174 (1980) 257-269. https://doi.org/10.1016/0029-554X(80)90440-1
  9. O.C. Yonts, C.E. Normand, D.E. Harrison, High-energy sputtering, J. Appl. Phys. 31 (1960) 447-450. https://doi.org/10.1063/1.1735605
  10. M. Sirena, N. Bergeal, J. Lesueur, G. Faini, R. Bernard, J. Briatico, D. Crete, J. Contour, Study and optimization of ion-irradiated high T c Josephson junctions by Monte Carlo simulations, J. Appl. Phys. 101 (2007), 123925.
  11. C.L. Chang, J.R. Yang, J.T. Lue, Monte Carlo simulation for the ion implantation of silicide heterostructures, J. Appl. Phys. 67 (1990) 2810-2814. https://doi.org/10.1063/1.345448
  12. J. Drobny, A. Hayes, D. Curreli, D.N. Ruzic, F-TRIDYN: A Binary Collision Approximation code for simulating ion interactions with rough surfaces, J. Nucl. Mater. 494 (2017) 278-283. https://doi.org/10.1016/j.jnucmat.2017.07.037
  13. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1818-1823, 2010. https://doi.org/10.1016/j.nimb.2010.02.091
  14. J.B. Sanders, Ranges of projectiles in amorphous materials, Can. J. Phys. 46 (1968) 455-465. https://doi.org/10.1139/p68-058
  15. O.S. Oen, D.K. Holmes, M.T. Robinson, Ranges of energetic atoms in solids, J. Appl. Phys. 34 (1963) 302-312. https://doi.org/10.1063/1.1702604
  16. R.S. Kalsi, R.P. Webb, Calculation of scattering angles in trajectory simulation, Nucl. Instrum. Methods Phys. Res. B 33 (1988) 530-533. https://doi.org/10.1016/0168-583X(88)90623-4
  17. M.H. Mendenhall, R.A. Weller, Algorithms for the rapid computation of classical cross sections for screened Coulomb collisions, Nucl. Instrum. Methods Phys. Res. B 58 (1991) 11-17. https://doi.org/10.1016/0168-583X(91)95672-Z
  18. G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, C. Cellini, Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si, J. Appl. Phys. 82 (1997) 5958-5964. https://doi.org/10.1063/1.366498
  19. M.H. Mendenhall, R.A. Weller, An algorithm for computing screened Coulomb scattering in Geant4, Nucl. Instrum. Methods Phys. Res. B 227 (2005) 420-430. https://doi.org/10.1016/j.nimb.2004.08.014
  20. Y.G. Li, Y. Yang, M.P. Short, Z.J. Ding, Z. Zeng, J. Li, IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry, Sci. Rep. 5 (2015), 18130.
  21. K. Wittmaack, Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions, J. Appl. Phys. 96 (2004) 2632-2637. https://doi.org/10.1063/1.1776318
  22. C. Borschel, C. Ronning, Ion beam irradiation of nanostructures - a 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. B 269 (2011) 2133-2138. https://doi.org/10.1016/j.nimb.2011.07.004
  23. B. Yuan, F.C. Yu, S.M. Tang, A database method for binary atomic scattering angle calculation, Nucl. Instrum. Methods Phys. Res. B 83 (1993) 413-418. https://doi.org/10.1016/0168-583X(93)95864-2
  24. A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmid, U.v. Toussaint, G. Badelow, SDTrimSP Version 6.00, IPP Report 2019/02, MaxPlanck-Institut fr Plasmaphysik, 2019.
  25. W. Eckstein, R. Dohmen, A. Mutzke, R. Schneider, SDTrimSP: A Monte-Carlo Code for Calculating Collision Phenomena in Randomized Targets, IPP, Garching, 2007.
  26. A. Mutzke, W. Eckstein, Ion fluence dependence of the Si sputtering yield by noble gas ion bombardment, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (2008) 872-876. https://doi.org/10.1016/j.nimb.2008.01.053
  27. A. Rai, A. Mutzke, R. Schneider, Modeling of chemical erosion of graphite due to hydrogen by inclusion of chemical reactions in SDTrimSP, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2639-2648. https://doi.org/10.1016/j.nimb.2010.06.040
  28. A. Mutzke, A. Rai, R. Schneider, E. Angelin, R. Hippler, Modeling of altered layer formation during reactive ion etching of GaAs, Appl. Surf. Sci. 263 (2012) 626-632. https://doi.org/10.1016/j.apsusc.2012.09.123
  29. A. Mutzke, G. Bandelow, R. Schneider, Sputtering of mixed materials of beryllium and tungsten by hydrogen and helium, J. Nucl. Mater. 467 (2015) 413-417. https://doi.org/10.1016/j.jnucmat.2015.05.052
  30. J. Schmitz, A. Mutzke, A. Litnovsky, F. Klein, X. Tan, T. Wegener, P. Hansen, N. Aghdassi, A. Eksaeva, M. Rasinski, Preferential sputtering induced Cr-Diffusion during plasma exposure of WCrY smart alloys, J. Nucl. Mater. 526 (2019), 151767.
  31. K. Wittmaack, A. Mutzke, Depth of origin of sputtered atoms: exploring the dependence on relevant target properties to identify the correlation with low-energy ranges, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 281 (2012) 37-44. https://doi.org/10.1016/j.nimb.2012.03.028
  32. K. Wittmaack, A. Mutzke, Highly accurate nuclear and electronic stopping cross sections derived using Monte Carlo simulations to reproduce measured range data, J. Appl. Phys. 121 (2017), 105104.
  33. M. Nastasi, N. Michael, J. Mayer, J.K. Hirvonen, M. James, Ion-solid Interactions: Fundamentals and Applications, Cambridge University Press, 1996.
  34. J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, in: Treatise on Heavy-Ion Science, Springer, 1985, pp. 93-129.
  35. G. Elmer Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.
  36. ASTM-E521-16, Standard practice for investigating the effects of neutron radiation damage using charged-particle irradiation, in: Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation, ASTM International West, Conshohocken, PA, 2016.
  37. Y. Yamamura, N. Matsunami, N. Itoh, Theoretical studies on an empirical formula for sputtering yield at normal incidence, Radiat. Eff. 71 (1983) 65-86. https://doi.org/10.1080/00337578308218604
  38. N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, Energy dependence of the ion-induced sputtering yields of monatomic solids, Atomic Data Nucl. Data Tables 31 (1984) 1-80. https://doi.org/10.1016/0092-640X(84)90016-0
  39. D. Rosenberg, G.K. Wehner, Sputtering yields for low energy He+-, Kr+-, and Xe+-Ion bombardment, J. Appl. Phys. 33 (1962) 1842-1845. https://doi.org/10.1063/1.1728843
  40. J. Bohdansky, Important sputtering yield data for Tokamaks: a comparison of measurements and estimates, J. Nucl. Mater. 93 (1980) 44-60. https://doi.org/10.1016/0022-3115(80)90302-5
  41. W. Eckstein, Sputtering yields, in: Sputtering by Particle Bombardment, Springer, 2007, pp. 33-187.
  42. W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger, Sputtering Data, Report IPP 9/82, IPP, Garching, 1993.
  43. H. Oechsner, Untersuchungen zur Festkorperzerst aubung bei schiefwinkligem Ionenbeschuss polykristalliner Metalloberflachen im Energiebereich um 1 keV, Z. fur Physik A Hadrons Nucl. 261 (1973) 37-58. https://doi.org/10.1007/BF01402280
  44. M. Hou, M.T. Robinson, Computer simulation of low-energy sputtering in the binary collision approximation, J. Appl. Phys. 18 (1979) 381-389. https://doi.org/10.1007/BF00899692
  45. N. Laegreid, G. Wehner, Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV, J. Appl. Phys. 32 (1961) 365-369. https://doi.org/10.1063/1.1736012
  46. A. Southern, W.R. Willis, M.T. Robinson, Sputtering experiments with 1-to 5-keV Ar+ ions, J. Appl. Phys. 34 (1963) 153-163. https://doi.org/10.1063/1.1729057
  47. H. Schirrwitz, Kathodenzerst aubung bei Beschuss verschiedener Metalle mit Argon-Ionen im mittleren Energiebereich, Beitrage aus der Plasmaphysik 2 (1962) 188-204. https://doi.org/10.1002/ctpp.19620020305
  48. O. Almen, G. Bruce, Collection and sputtering experiments with noble gas ions, Nucl. Instrum. Methods Phys. Res. B 11 (1961) 257-278. https://doi.org/10.1016/0029-554X(61)90026-X
  49. M. Braun, B. Emmoth, R. Buchta, Concentration profiles and sputtering yields measured by optical radiation of sputtered particles, Radiat. Eff. 28 (1976) 77-83. https://doi.org/10.1080/00337577608233030
  50. Y. Okajima, Measurement of sputtering rate for 10 keV O2+ ions with ion microanalyzer, Jpn. J. Appl. Phys. 20 (1981) 2313.
  51. S. Ilias, G. Sene, P. Moeller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M.F. Ravet, Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle, Diam. Relat. Mater. 5 (1996) 835-839. https://doi.org/10.1016/0925-9635(95)00412-2
  52. R.D. Kolasinski, J.E. Polk, D. Goebel, L.K. Johnson, Carbon sputtering yield measurements at grazing incidence, Appl. Surf. Sci. 254 (2008) 2506-2515. https://doi.org/10.1016/j.apsusc.2007.09.082