Acknowledgement
The authors of this article acknowledge with deep gratitude the help of Dr. Andreas Mutzke for granting us access to his latest version of the simulation program SDTrimSP (ver. 6.05).
References
- D.E. Harrison, D.S. Greiling, Computer studies of xenon-ion ranges in a finite-temperature tungsten lattice, J. Appl. Phys. 38 (1967) 3200-3211. https://doi.org/10.1063/1.1710090
- Y. Qiang, W. Chenbin, L. Wei, Monte Carlo modeling on primary damage generation induced by ions in solid materials, Nucl. Saf. Simulat. 7 (2016) 88-96.
- F. Schiettekatte, Fast Monte Carlo for ion beam analysis simulations, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 1880-1885. https://doi.org/10.1016/j.nimb.2007.11.075
- J.P. Biersack, Computer simulations of sputtering, Nucl. Instrum. Methods Phys. Res. B 27 (1987) 21-36. https://doi.org/10.1016/0168-583X(87)90005-X
- J.P. Biersack, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. B 174 (1980) 13.
- W. Moller, W. Eckstein, TRIDYN - binary collision simulation of atomic collisions and dynamic composition changes in solids, Comput. Phys. Comun. 51 (1988) 14.
- J.L. Whitton, W.O. Hofer, U. Littmark, M. Braun, B. Emmoth, Influence of surface morphology on the angular distribution and total yield of copper sputtered by energetic argon ions, Appl. Phys. Lett. 36 (1980) 531-533. https://doi.org/10.1063/1.91568
- J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. B 174 (1980) 257-269. https://doi.org/10.1016/0029-554X(80)90440-1
- O.C. Yonts, C.E. Normand, D.E. Harrison, High-energy sputtering, J. Appl. Phys. 31 (1960) 447-450. https://doi.org/10.1063/1.1735605
- M. Sirena, N. Bergeal, J. Lesueur, G. Faini, R. Bernard, J. Briatico, D. Crete, J. Contour, Study and optimization of ion-irradiated high T c Josephson junctions by Monte Carlo simulations, J. Appl. Phys. 101 (2007), 123925.
- C.L. Chang, J.R. Yang, J.T. Lue, Monte Carlo simulation for the ion implantation of silicide heterostructures, J. Appl. Phys. 67 (1990) 2810-2814. https://doi.org/10.1063/1.345448
- J. Drobny, A. Hayes, D. Curreli, D.N. Ruzic, F-TRIDYN: A Binary Collision Approximation code for simulating ion interactions with rough surfaces, J. Nucl. Mater. 494 (2017) 278-283. https://doi.org/10.1016/j.jnucmat.2017.07.037
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1818-1823, 2010. https://doi.org/10.1016/j.nimb.2010.02.091
- J.B. Sanders, Ranges of projectiles in amorphous materials, Can. J. Phys. 46 (1968) 455-465. https://doi.org/10.1139/p68-058
- O.S. Oen, D.K. Holmes, M.T. Robinson, Ranges of energetic atoms in solids, J. Appl. Phys. 34 (1963) 302-312. https://doi.org/10.1063/1.1702604
- R.S. Kalsi, R.P. Webb, Calculation of scattering angles in trajectory simulation, Nucl. Instrum. Methods Phys. Res. B 33 (1988) 530-533. https://doi.org/10.1016/0168-583X(88)90623-4
- M.H. Mendenhall, R.A. Weller, Algorithms for the rapid computation of classical cross sections for screened Coulomb collisions, Nucl. Instrum. Methods Phys. Res. B 58 (1991) 11-17. https://doi.org/10.1016/0168-583X(91)95672-Z
- G. Lulli, E. Albertazzi, M. Bianconi, R. Nipoti, M. Cervera, A. Carnera, C. Cellini, Stopping and damage parameters for Monte Carlo simulation of MeV implants in crystalline Si, J. Appl. Phys. 82 (1997) 5958-5964. https://doi.org/10.1063/1.366498
- M.H. Mendenhall, R.A. Weller, An algorithm for computing screened Coulomb scattering in Geant4, Nucl. Instrum. Methods Phys. Res. B 227 (2005) 420-430. https://doi.org/10.1016/j.nimb.2004.08.014
- Y.G. Li, Y. Yang, M.P. Short, Z.J. Ding, Z. Zeng, J. Li, IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry, Sci. Rep. 5 (2015), 18130.
- K. Wittmaack, Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions, J. Appl. Phys. 96 (2004) 2632-2637. https://doi.org/10.1063/1.1776318
- C. Borschel, C. Ronning, Ion beam irradiation of nanostructures - a 3D Monte Carlo simulation code, Nucl. Instrum. Methods Phys. Res. B 269 (2011) 2133-2138. https://doi.org/10.1016/j.nimb.2011.07.004
- B. Yuan, F.C. Yu, S.M. Tang, A database method for binary atomic scattering angle calculation, Nucl. Instrum. Methods Phys. Res. B 83 (1993) 413-418. https://doi.org/10.1016/0168-583X(93)95864-2
- A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, K. Schmid, U.v. Toussaint, G. Badelow, SDTrimSP Version 6.00, IPP Report 2019/02, MaxPlanck-Institut fr Plasmaphysik, 2019.
- W. Eckstein, R. Dohmen, A. Mutzke, R. Schneider, SDTrimSP: A Monte-Carlo Code for Calculating Collision Phenomena in Randomized Targets, IPP, Garching, 2007.
- A. Mutzke, W. Eckstein, Ion fluence dependence of the Si sputtering yield by noble gas ion bombardment, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 266 (2008) 872-876. https://doi.org/10.1016/j.nimb.2008.01.053
- A. Rai, A. Mutzke, R. Schneider, Modeling of chemical erosion of graphite due to hydrogen by inclusion of chemical reactions in SDTrimSP, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268 (2010) 2639-2648. https://doi.org/10.1016/j.nimb.2010.06.040
- A. Mutzke, A. Rai, R. Schneider, E. Angelin, R. Hippler, Modeling of altered layer formation during reactive ion etching of GaAs, Appl. Surf. Sci. 263 (2012) 626-632. https://doi.org/10.1016/j.apsusc.2012.09.123
- A. Mutzke, G. Bandelow, R. Schneider, Sputtering of mixed materials of beryllium and tungsten by hydrogen and helium, J. Nucl. Mater. 467 (2015) 413-417. https://doi.org/10.1016/j.jnucmat.2015.05.052
- J. Schmitz, A. Mutzke, A. Litnovsky, F. Klein, X. Tan, T. Wegener, P. Hansen, N. Aghdassi, A. Eksaeva, M. Rasinski, Preferential sputtering induced Cr-Diffusion during plasma exposure of WCrY smart alloys, J. Nucl. Mater. 526 (2019), 151767.
- K. Wittmaack, A. Mutzke, Depth of origin of sputtered atoms: exploring the dependence on relevant target properties to identify the correlation with low-energy ranges, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 281 (2012) 37-44. https://doi.org/10.1016/j.nimb.2012.03.028
- K. Wittmaack, A. Mutzke, Highly accurate nuclear and electronic stopping cross sections derived using Monte Carlo simulations to reproduce measured range data, J. Appl. Phys. 121 (2017), 105104.
- M. Nastasi, N. Michael, J. Mayer, J.K. Hirvonen, M. James, Ion-solid Interactions: Fundamentals and Applications, Cambridge University Press, 1996.
- J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, in: Treatise on Heavy-Ion Science, Springer, 1985, pp. 93-129.
- G. Elmer Forsythe, M.A. Malcolm, C.B. Moler, Computer Methods for Mathematical Computations, Prentice-Hall, 1976.
- ASTM-E521-16, Standard practice for investigating the effects of neutron radiation damage using charged-particle irradiation, in: Standard Practice for Investigating the Effects of Neutron Radiation Damage Using Charged-Particle Irradiation, ASTM International West, Conshohocken, PA, 2016.
- Y. Yamamura, N. Matsunami, N. Itoh, Theoretical studies on an empirical formula for sputtering yield at normal incidence, Radiat. Eff. 71 (1983) 65-86. https://doi.org/10.1080/00337578308218604
- N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata, S. Miyagawa, K. Morita, R. Shimizu, H. Tawara, Energy dependence of the ion-induced sputtering yields of monatomic solids, Atomic Data Nucl. Data Tables 31 (1984) 1-80. https://doi.org/10.1016/0092-640X(84)90016-0
- D. Rosenberg, G.K. Wehner, Sputtering yields for low energy He+-, Kr+-, and Xe+-Ion bombardment, J. Appl. Phys. 33 (1962) 1842-1845. https://doi.org/10.1063/1.1728843
- J. Bohdansky, Important sputtering yield data for Tokamaks: a comparison of measurements and estimates, J. Nucl. Mater. 93 (1980) 44-60. https://doi.org/10.1016/0022-3115(80)90302-5
- W. Eckstein, Sputtering yields, in: Sputtering by Particle Bombardment, Springer, 2007, pp. 33-187.
- W. Eckstein, C. Garcia-Rosales, J. Roth, W. Ottenberger, Sputtering Data, Report IPP 9/82, IPP, Garching, 1993.
- H. Oechsner, Untersuchungen zur Festkorperzerst aubung bei schiefwinkligem Ionenbeschuss polykristalliner Metalloberflachen im Energiebereich um 1 keV, Z. fur Physik A Hadrons Nucl. 261 (1973) 37-58. https://doi.org/10.1007/BF01402280
- M. Hou, M.T. Robinson, Computer simulation of low-energy sputtering in the binary collision approximation, J. Appl. Phys. 18 (1979) 381-389. https://doi.org/10.1007/BF00899692
- N. Laegreid, G. Wehner, Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV, J. Appl. Phys. 32 (1961) 365-369. https://doi.org/10.1063/1.1736012
- A. Southern, W.R. Willis, M.T. Robinson, Sputtering experiments with 1-to 5-keV Ar+ ions, J. Appl. Phys. 34 (1963) 153-163. https://doi.org/10.1063/1.1729057
- H. Schirrwitz, Kathodenzerst aubung bei Beschuss verschiedener Metalle mit Argon-Ionen im mittleren Energiebereich, Beitrage aus der Plasmaphysik 2 (1962) 188-204. https://doi.org/10.1002/ctpp.19620020305
- O. Almen, G. Bruce, Collection and sputtering experiments with noble gas ions, Nucl. Instrum. Methods Phys. Res. B 11 (1961) 257-278. https://doi.org/10.1016/0029-554X(61)90026-X
- M. Braun, B. Emmoth, R. Buchta, Concentration profiles and sputtering yields measured by optical radiation of sputtered particles, Radiat. Eff. 28 (1976) 77-83. https://doi.org/10.1080/00337577608233030
- Y. Okajima, Measurement of sputtering rate for 10 keV O2+ ions with ion microanalyzer, Jpn. J. Appl. Phys. 20 (1981) 2313.
- S. Ilias, G. Sene, P. Moeller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M.F. Ravet, Planarization of diamond thin film surfaces by ion beam etching at grazing incidence angle, Diam. Relat. Mater. 5 (1996) 835-839. https://doi.org/10.1016/0925-9635(95)00412-2
- R.D. Kolasinski, J.E. Polk, D. Goebel, L.K. Johnson, Carbon sputtering yield measurements at grazing incidence, Appl. Surf. Sci. 254 (2008) 2506-2515. https://doi.org/10.1016/j.apsusc.2007.09.082