DOI QR코드

DOI QR Code

Investigation of the various properties of several candidate additives as buffer materials

  • Gi-Jun Lee (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Seok Yoon (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Taehyun Kim (Disposal Performance Demonstration on Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Seeun Chang (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute (KAERI))
  • Received : 2022.08.04
  • Accepted : 2022.11.21
  • Published : 2023.03.25

Abstract

Bentonite buffer material is a critical component in an engineered barrier system (EBS) for disposing high-level radioactive waste (HLW). The bentonite buffer material protects the disposal canister from groundwater penetration and releases decay heat to the surrounding rock mass; thus, it should possess high thermal conductivity, low hydraulic conductivity, and moderate swelling pressure to safely dispose the HLWs. Bentonite clay is a suitable buffer material because it satisfies the safety criteria. Several additives have been suggested as mixtures with bentonite to increase the thermal-hydraulic-mechanical-chemical (THMC) properties of bentonite buffer materials. Therefore, this study investigated the geotechnical, mineralogical, and THMC properties of several candidate additives such as sand, graphite, granite, and SiC powders. Datasets obtained in this study can be used to select adequate additives to improve the THMC properties of the buffer material.

Keywords

Acknowledgement

This research was funded by the Nuclear Research and Development Program (2021M2E3A2041351) by the National Research Foundation of Korea, and Institute for Korea Spent Nuclear Fuel and National Research Foundation of Korea (2021M2E1A1085193).

References

  1. W.J. Cho, J.O. Lee, S. Kwon, Analysis of thermos-hydro-mechanical process in the engineered barrier system of a high-level waste repository, Nucl. Eng. Des. 240 (2010) 1688-1698. https://doi.org/10.1016/j.nucengdes.2010.02.027
  2. Y.G. Chen, X.M.L. Liu, X. Mu, W.M. Ye, Y.J. Cui, B. Chen, D.B. Wu, Thermal conductivity of compacted GO-GMZ bentonite used as buffer material for a high-level radioactive waste repository, Adv. Civ. Eng. 2018 (9530813) (2018) 11.
  3. S. Yoon, G.J. Lee, T.J. Park, C. Lee, D.K. Cho, Thermal conductivity evaluation for bentonite buffer materials under elevated temperature conditions, Case Stud. Therm. Eng. 30 (2022), 101792.
  4. SKB, Design Premises for a KBS-3V Repository Based on Results from the Safety Assessment SR-Can and Some Subsequent Analyses, SKB TR-09-22, SKB, 2009.
  5. JNC, H12 Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan (Supporting Report 2) Repository Design and Engineering Technology. JNC TN1410 2000-003, Japan Nuclear Cycle Development Institute, Tokai, Japan, 1999.
  6. G.R. Simmons, P. Baumgartner, The Disposal of Canada's Nuclear Fuel Waste: Engineering for a Disposal Facility, AECL-10715, Atomic Energy of Canada Limited, 1994.
  7. K.I. Kim, C. Lee, J. Lee, J.S. Kim, D.K. Cho, Estimation of Disposal Spacing and Rock Mass Conditions for High-Efficiency Repository Based on Temperature Limit Requirement of Bentonite Buffer, 2021. KAERI/TR-8711/2021.
  8. P. Wersin, L.H. Johnson, I.G. McKinley, Performance of the bentonite barrier at temperatures beyond 100℃: a critical review, Phys. Chem. Earth 32 (2007) 780-788. https://doi.org/10.1016/j.pce.2006.02.051
  9. L. Zhen, J. Rutqvist, J.T. Birkholzer, H. Liu, On the impact of temperatures up to 200℃ in clay repositories with bentonite engineer barrier systems: a study with coupled thermal, hydrological, chemical, and mechanical modeling, Eng. Geol. 197 (2015) 278-295. https://doi.org/10.1016/j.enggeo.2015.08.026
  10. V.R. Ouhadi, R.N. Yong, A.R. Goodarzi, M. Safari-Zanjani, Effect of temperature on the re-structuring of microstructure and geo-environmental behavior of smectite, Appl. Clay Sci. 47 (2010) 2-9. https://doi.org/10.1016/j.clay.2008.08.008
  11. F. Peng, Y. Tan, Thermal conductivity of bentonite-graphite mixture and its prediction for high-level radioactive waste repository, Ann. Nucl. Energy 154 (2021), 108142.
  12. L. Xu, W.M. Ye, B. Chen, Y.G. Chen, Y.J. Cui, Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials, Eng. Geol. 213 (2016) 46-54. https://doi.org/10.1016/j.enggeo.2016.08.015
  13. Z.G. Chen, C.S. Tang, C. Zhu, B. Shi, Y.M. Liu, Compression, swelling and rebound behavior of GMZ bentonite/additive mixture under coupled hydro-mechanical condition, Eng. Geol. 221 (2017) 50-60. https://doi.org/10.1016/j.enggeo.2017.02.030
  14. P.V. Sivapullaiah, A. Sridharan, V.K. Stalin, Hydraulic conductivity of bentonite-sand mixtures, Can. Geotech. J. 37 (2) (2000) 406-413. https://doi.org/10.1139/t99-120
  15. S. Saba, J.D. Barnichon, Y.J. Cui, A.M. Tang, P. Delage, Microstructure and anisotropic swelling behaviour of compacted bentonite/sand mixture, J. Rock Mech. Geotech. Eng. 6 (2) (2014) 126-132. https://doi.org/10.1016/j.jrmge.2014.01.006
  16. X. Liu, G. Cai, L. Liu, S. Liu, A.J. Puppala, Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository, Int. J. Heat Mass Tran. 141 (2019) 981-994. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.015
  17. Z. Zeng, Y.J. Cui, J. Talandier, An insight into grain interaction in bentonite/ claystone mixture, Acta Geotechnica (2022) 1-7.
  18. M.J. Kim, G.J. Lee, S. Yoon, Numerical study on the effect of enhanced buffer materials in a high-level radioactive waste repository, Appl. Sci. 11 (18) (2021) 8733.
  19. Posiva SKB, Safety Functions, Performance Target and Technical Design Requirements for a KBS-3V Repository, Posiva SKB Report 01, Posiva Oy, 2017.
  20. M. Juvankoski, Buffer Design 2012, Posiva 2012-14, Posiva Oy, 2013.
  21. W.J. Cho, Bentonite Barrier Material for Radioactive Waste Disposal, 2019. KAERI/GP-535/2019.
  22. W.A. Nevin, H. Yamagishi, M. Yamaguchi, Y. Tawada, Emission of blue light from hydrogenated amorphous silicon carbide, Nature 368 (6471) (1994) 529-531. https://doi.org/10.1038/368529a0
  23. Google Earth, South Korea, https://earth.google.com/web/.
  24. ASTM, D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, 2011.
  25. S.N. Warren, R.R. Kallu, C.K. Barnard, Correlation of the rock mass rating (RMR) system with the unified soil classification system (USCS): introduction of the weak rock mass rating system (W-RMR), Rock Mech. Rock Eng. 49 (11) (2016) 4507-4518. https://doi.org/10.1007/s00603-016-1090-1
  26. S.R. Kaniraj, Design Aids in Soil Mechanics and Foundation Engineering, McGraw Hill Education (India) Private Limited, New Delhi, 1988.
  27. S. Roy, S.K. Bhalla, Role of geotechnical properties of soil on civil engineering structures, Resour. Environ. 7 (4) (2017) 103-109.
  28. Y. Zhou, K. Hirao, K. Watari, Y. Yamauchi, S. Kanzaki, Thermal conductivity of silicon carbide densified with rare-earth oxide additives, J. Eur. Ceram. Soc. 24 (2) (2004) 265-270. https://doi.org/10.1016/S0955-2219(03)00236-X
  29. M. Lee, H.J. Choi, J.W. Lee, J.P. Lee, Improvement of the Thermal Conductivity of a Compact Bentonite Buffer, 2013. KAERI/TR-5311/2013.
  30. Y.Z. Tan, Z.Y. Xie, F. Peng, F.H. Qian, H.J. Ming, Optimal mixing scheme for graphite-bentonite mixtures used as buffer materials in high-level waste repositories, Environ. Earth Sci. 80 (17) (2021) 1-13. https://doi.org/10.1007/s12665-020-09327-2
  31. ASTM D5890-19, Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners, ASTM International, West Conshohocken, PA, 2019.
  32. T. Huitti, M. Hakanen, A. Lindberg, Sorption of Cesium on Olkiluoto Mica Gneiss, in: Granodiorite and Granite, Posiva, vols. 98-11, Posiva Oy, Helsinki, 1998.
  33. W. Um, R.J. Serne, C.F. Brown, G.V. Last, U(VI) adsorption on 200-UP-1 aquifer sediments at the Hanford Site, J. Contam. Hydrol. 93 (2007) 1.
  34. S. Chang, W. Um, W. Kim, H. Kim, Effect of seawater intrusion on radioactive strontium (90Sr) sorption and transport at nuclear power plants, Radiochim. Acta 106 (2018) 2.
  35. G.J. Lee, S. Yoon, W.J. Cho, Effect of bentonite type on thermal conductivity in a HLW repository, J. Nucl. Fuel Cycle Waste Technol. 19 (3) (2021) 331-338. https://doi.org/10.7733/jnfcwt.2021.19.3.331
  36. P. Chantrenne, J.L. Barrat, X. Blase, J.D. Gale, An analytical model for the thermal conductivity of silicon nanostructures, J. Appl. Phys. 97 (10) (2005), 104318.