DOI QR코드

DOI QR Code

Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel

  • Mouhao Wang (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University) ;
  • Shanshan Bu (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University) ;
  • Bing Zhou (Southwestern Institute of Physics) ;
  • Zhenzhong Li (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University) ;
  • Deqi Chen (Key Laboratory of Low-Grade Energy Utilization Technologies & System, Chongqing University)
  • Received : 2022.09.06
  • Accepted : 2022.12.03
  • Published : 2023.03.25

Abstract

Fully Ceramic Microencapsulated (FCM) fuel is emerging advanced fuel material for the future nuclear reactors. The fuel pellet in the FCM fuel is composed of matrix and a large number of TRistructural-ISOtopic (TRISO) fuel particles which are randomly dispersed in the SiC matrix. The minimum layer thickness in a TRISO fuel particle is on the order of 10-5 m, and the length of the FCM pellet is on the order of 10-2 m. Hence, the heat transfer in the FCM pellet is a multi-scale phenomenon. In this study, three multi-scale heat conduction models including the Multi-region Layered (ML) model, Multi-region Non-layered (MN) model and Homogeneous model for FCM pellet were constructed. In the ML model, the random distributed TRISO fuel particles and coating layers are completely built. While the TRISO fuel particles with coating layers are homogenized in the MN model and the whole fuel pellet is taken as the homogenous material in the Homogeneous model. Taking the results by the ML model as the benchmark, the abilities of the MN model and Homogenous model to predict the maximum and average temperature were discussed. It was found that the MN model and the Homogenous model greatly underestimate the temperature of TRISO fuel particles. The reason is mainly that the conventional equivalent thermal conductivity (ETC) models do not take the internal heat source into account and are not suitable for the TRISO fuel particle. Then the improved ETCs considering internal heat source were derived. With the improved ETCs, the MN model is able to capture the peak temperature as well as the average temperature at a wide range of the linear powers (165 W/cm~ 415 W/cm) and the packing fractions (20%-50%). With the improved ETCs, the Homogenous model is better to predict the average temperature at different linear powers and packing fractions, and able to predict the peak temperature at high packing fractions (45%-50%).

Keywords

Acknowledgement

We would like to acknowledge financial supports for this work provided by the National Natural Science Foundation of China (No.51606016).

References

  1. K.A. Terrani, J.O. Kiggans Jr., J.W. McMurray, B.C. Jolly, R.D. Hunt, M.P. Trammell, L.L. Snead, Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2016.
  2. S.M. Bragg-Sitton, M. Todosow, R. Montgomery, C.R. Stanek, R. Montgomery, W.J. Carmack, Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel, Nucl. Technol. 195 (2) (2016) 111-123. https://doi.org/10.13182/NT15-149
  3. F. Venneri, Y. Katoh, L.L. Snead, Fully Ceramic Nuclear Fuel and Related Methods, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2016.
  4. Q. Deng, S. Li, D. Wang, Z. Liu, F. Xie, J. Zhao, J. Liang, Y. Jiang, Neutronic design and evaluation of the solid microencapsulated fuel in LWR, Nucl. Eng. Technol. (2022).
  5. D.A. Petti, J. Buongiorno, J.T. Maki, R.R. Hobbins, G.K. Miller, Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance, Nucl. Eng. Des. 222 (2-3) (2003) 281-297. https://doi.org/10.1016/S0029-5493(03)00033-5
  6. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (1-3) (2014) 520-533. https://doi.org/10.1016/j.jnucmat.2013.09.052
  7. Y.S. Cho, S.G. Hong, Physics analysis of new TRU recycling options using FCM and MOX fueled PWR assemblies, Nucl. Eng. Technol. 52 (4) (2020) 689-699. https://doi.org/10.1016/j.net.2019.10.006
  8. A. Shaimerdenov, S. Gizatulin, D. Dyussambayev, S. Askerbekov, S. Ueta, J. Aihara, T. Shibata, N. Sakaba, Study on the effect of long-term high temperature irradiation on TRISO fuel, Nucl. Eng. Technol. (2022).
  9. L. Snead, F. Venneri, Y. Kim, K. Terrani, J. Tulenko, C. Forsberg, P. Peterson, E. Lahoda, Fully ceramic microencapsulated fuels: a transformational technology for present and next generation reactors, Trans. Am. Nucl. Soc. 104 (2011) 668.
  10. J.J. Powers, W.J. Lee, F. Venneri, L.L. Snead, C. Jo, D. Hwang, J. Chun, Y. Kim, K.A. Terrani, Fully Ceramic Microencapsulated (FCM) Replacement Fuel for LWRs, 2013.
  11. K.A. Terrani, L.L. Snead, J.C. Gehin, Microencapsulated fuel technology for commercial light water and advanced reactor application, J. Nucl. Mater. 427 (1-3) (2012) 209-224. https://doi.org/10.1016/j.jnucmat.2012.05.021
  12. D. Hartanto, Y. Kim, F. Venneri, Neutronics evaluation of a super-deep-burn with TRU fully ceramic microencapsulated (FCM) fuel in CANDU, Prog. Nucl. Energy 83 (2015) 261-269. https://doi.org/10.1016/j.pnucene.2015.04.001
  13. Y. Lee, N.Z. Cho, Nuclear-Thermal Analysis of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed TRISO Particles via Two-Temperature Homogenized Model, Reactor Physics Asia, 2015.
  14. J. Carmack, F. Goldner, S.M. Bragg-Sitton, L.L. Snead, Overview of the US DOE Accident Tolerant Fuel Development Program, Idaho National Lab.(INL), Idaho Falls, ID (United States), 2013.
  15. W. Zhou, W. Zhou, Enhanced thermal conductivity accident tolerant fuels for improved reactor safety-A comprehensive review, Ann. Nucl. Energy 119 (2018) 66-86. https://doi.org/10.1016/j.anucene.2018.04.040
  16. C. Ang, L. Snead, Y. Kato, A logical approach for zero-rupture Fully Ceramic Microencapsulated (FCM) fuels via pressure-assisted sintering route, J. Nucl. Mater. 531 (2020), 151987.
  17. Y. Lee, N.Z. Cho, Steady-and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model, Ann. Nucl. Energy 76 (2015) 283-296. https://doi.org/10.1016/j.anucene.2014.09.027
  18. A. Novak, R. Carlsen, S. Schunert, P. Balestra, D. Reger, R. Slaybaugh, R. Martineau, Pronghorn: a multidimensional coarse-mesh application for advanced reactor thermal hydraulics, Nucl. Technol. 207 (7) (2021) 1015-1046. https://doi.org/10.1080/00295450.2020.1825307
  19. D. Schappel, K. Terrani, J. Powers, L. Snead, B. Wirth, Modeling the performance of TRISO-based fully ceramic matrix (FCM) fuel in an LWR environment using BISON, Nucl. Eng. Des. 335 (2018) 116-127. https://doi.org/10.1016/j.nucengdes.2018.05.018
  20. Z. Liu, B. Zhou, J. Sun, Theoretical Analysis of Effective Thermal Conductivity of Coated Particle Fuel, The 16th National Conference on Reactor Thermodynamic Fluids, 2019 (In Chinese).
  21. L. Qian, H. Yu, Y. Sun, J. Deng, W. Cheng, Y. Liu, S. Du, D. Shen, Theoretical research on effective thermal conductivity of TRISO particle, Nucl. Power Eng. 41 (6) (2020) 69-74 (In Chinese).
  22. N.Z. Cho, H. Yu, J.W. Kim, Two-temperature homogenized model for steady-state and transient thermal analyses of a pebble with distributed fuel particles, Ann. Nucl. Energy 36 (4) (2009) 448-457. https://doi.org/10.1016/j.anucene.2008.11.031
  23. N.R. Brown, H. Ludewig, A. Aronson, G. Raitses, M. Todosow, Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part II: nodal core calculations and preliminary study of thermal hydraulic feedback, Ann. Nucl. Energy 62 (2013) 548-557. https://doi.org/10.1016/j.anucene.2013.05.027
  24. I. Clifford, K.N. Ivanov, M.N. Avramova, A multi-scale homogenization and reconstruction approach for solid material temperature calculations in prismatic high temperature reactor cores, Nucl. Eng. Des. 256 (2013) 1-13. https://doi.org/10.1016/j.nucengdes.2012.11.016
  25. S. Kamalpour, A.A. Salehi, H. Khalafi, N. Mataji-Kojouri, G. Jahanfarnia, The potential impact of Fully Ceramic Microencapsulated (FCM) fuel on thermal hydraulic performance of SMART reactor, Nucl. Eng. Des. 339 (2018) 39-52. https://doi.org/10.1016/j.nucengdes.2018.08.029
  26. M. Liu, J. Thurgood, Y. Lee, D.V. Rao, Development of a two-regime heat conduction model for TRISO-based nuclear fuels, J. Nucl. Mater. 519 (2019) 255-264. https://doi.org/10.1016/j.jnucmat.2019.04.004
  27. Y. Lee, B. Cho, N.Z. Cho, Steady-and transient-state analyses of fully ceramic microencapsulated fuel with randomly dispersed tristructural isotropic particles via two-temperature homogenized model-II: applications by coupling with COREDAX, Nucl. Eng. Technol. 48 (3) (2016) 660-672. https://doi.org/10.1016/j.net.2016.02.006
  28. W. Goeddel, Coated-particle fuels in high-temperature reactors: a summary of current applications, Nucl. Appl. 3 (10) (1967) 599-614.
  29. R. Stainsby, A. Grief, M. Worsley, F. Dawson, Investigation of Local Heat Transfer Phenomena in a Pebble Bed HTGR Core, AMEC NSS Limited, London, United Kingdom, 2009.
  30. Math works lnc, MATLAB software, Natick, MA, USA, https://www.mathworks.com/.
  31. COMSOL lnc, COMSOL Multiphysics User's Manual Version COMSOL 5.6, 2020 (City, State, USA).
  32. P. Chen, S. Qiu, S. Liu, Y. Zhou, Y. Xin, S. Gao, X. Qiu, H. Lu, Preliminary analysis of a fully ceramic microencapsulated fuel thermal-mechanical performance, Mathematics 7 (5) (2019) 448.
  33. J. Fink, Thermophysical properties of uranium dioxide, J. Nucl. Mater. 279 (1) (2000) 1-18. https://doi.org/10.1016/S0022-3115(99)00273-1
  34. L.L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (1-3) (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  35. B. Collin, Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code, Idaho National Lab.(INL), Idaho Falls, ID (United States), 2013.
  36. J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon press, 1873.
  37. Y. Chiew, E. Glandt, The effect of structure on the conductivity of a dispersion, J. Colloid Interface Sci. 94 (1) (1983) 90-104. https://doi.org/10.1016/0021-9797(83)90238-2
  38. B. Bruggeman, Dielectric constant and conductivity of mixtures of isotropic materials Ann, Physiother. Frontline 24 (1935) 536-679.
  39. V. Raghavan, H. Martin, Modelling of two-phase thermal conductivity, Chem. Eng. Process 34 (5) (1995) 439-446. https://doi.org/10.1016/0255-2701(94)00577-X
  40. R.N. Morris, P.J. Pappano, Estimation of maximum coated particle fuel compact packing fraction, J. Nucl. Mater. 361 (2007) 18-29. https://doi.org/10.1016/j.jnucmat.2006.10.017