참고문헌
- Nuclear Technology Review 2020, International Atomic Energy Agency, 2020, pp. 1-67. GC(64)/INF/2.
- R.G. Lewin, M.T. Harisson, International developments in electrorefining technologies for pyrochemical processing of spent nuclear fuels, in: Robin Taylor, Reprocessing and Recycling of Spent Nuclear Fuel, first ed., Woodhead Publishing, 2015, pp. 373-413.
- A. Salyulev, A. Potapov, V. Khokhlov, V. Shishkin, The electrical conductivity of model melts based on LiCl-KCl, used for the processing of spent nuclear fuel, J. Electrochim. Acta 257 (2017) 510-515. https://doi.org/10.1016/j.electacta.2017.09.154
- A. Zhitkov, A. Potapov, K. Karimov, V. Shishkin, A. Dedyukhin, Y. Zaykov, Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K, J. Nucl. Eng. Technol. 52 (2020) 123-134, https://doi.org/10.1016/j.net.2019.07.006.
- A. Salyulev, A. Potapov, Electrical conductivity of (LiCl-KCl)eut.-SrCl2 molten mixtures, J. Chem. Eng. Data 66 (12) (2021) 4563-4571, https://doi.org/10.1021/acs.jced.1c00591.
- A.B. Salyulev, A.V. Shishkin, V. Yu. Shishkin, Yu.P. Zaikov, Distillation of lithium chloride from the products of uranium dioxide metallization, J. At. Energy 126 (4) (2019) 226-229, https://doi.org/10.1007/s10512-019-00541-1.
- Yu.P. Zaikov, V. Yu. Shishkin, A.M. Potapov, A.E. Dedyukhin, V.A. Kovrov, A.S. Kholkina, V.A. Volkovich, I.B. Polovov, Research and Development of the pyrochemical processing for the mixed nitride uranium-plutonium fuel, J. Phys. Conf. Ser. 1475 (2020), 012027, https://doi.org/10.1088/1742-6596/ 1475/1/012027.
- E.O. Adamov, Yu.S. Mochalov, V.I. Rachkov, Yu.S. Khomyakov, A. Yu. Shadrin, V.A. Kascheev, A.V. Khaperskaya, Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy, J. At. Energy 130 (1) (2021) 29-35, https://doi.org/10.1088/1742-6596/1475/1/012027.
- A.A. Zherebtsov, Yu.S. Mochalov, A.Yu. Shadrin, Yu.P. Zaikov, M.K. Gorbachev, K.A. Sokolov, V.A. Kisly, D.A. Goncharov, Development of the general design of the industrial energy complex with CNFC, J. Phys. Conf. Ser. 1475 (2020), 012007, https://doi.org/10.1088/1742-6596/1475/1/012007.
- J.J. Laidler, et al., Development of pyroprocessing technology, J. Prog. Nucl. Energy 31 (1) (1997) 131-140. https://doi.org/10.1016/0149-1970(96)00007-8
- M.F. Simpson, Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory, Idaho National Laboratory, 2012, pp. 1-21. INL/EXT-12-25124.
- J.-G. Kim, S.-J. Lee, S.-B. Park, S.-C. Hwang, H. Lee, High-throughput electrorefining system with graphite cathodes and a bucket-type deposit retriever, J. Procedia Chem. 7 (2012) 754-757. https://doi.org/10.1016/j.proche.2012.10.114
- F. GAO, et al., Criticality safety evaluation of materials concerning pyroprocessing, J. Nucl. Sci. Technol. 48 (6) (2011) 919-928. https://doi.org/10.1080/18811248.2011.9711778
- T. Inoue, T. Koyama, Y. Arai, State of the art of pyroprocessing technology in Japan, J. Energy Procedia. 7 (2011) 405-413. https://doi.org/10.1016/j.egypro.2011.06.053
- K. Nagarajan, et al., Development of pyrochemical reprocessing for spent metal fuels, J. Energy Procedia. 7 (2011) 431-436. https://doi.org/10.1016/j.egypro.2011.06.057
- E. Mendes, et al., Application of the pyrochemical DOS, developed by the CEA, within reprocessing of CERCER transmutation fuel targets, J. Procedia Chem. 21 (2016) 433-440. https://doi.org/10.1016/j.proche.2016.10.060
- Federal (Russian) Rules and Regulations in the Field of Nuclear Energy Use Nuclear Fuel Cycle Facilities, Federal Environmental, Industrial and Nuclear Supervision Service, 2005, pp. 1-37. NP-063-05 (in Russian).
- M.A. Kalugin, D.S. Oleynik, D.A. Shkarovsky, Overview of the MCU Monte Carlo software package, J. Ann. Nucl. Energy 82 (2015) 54-62. https://doi.org/10.1016/j.anucene.2014.08.032
- X-5 Monte Carlo Team, MCNP - A General Monte Carlo N-Particle Transport Code, Version 5, Los Alamos National Laboratory, 2008, pp. 1-416. LA-UR-03-1987.
- N.I. Alekseev, S.N. Bol'shagin, E.A. Gomin, S.S. Gorodkov, M.I. Gurevich, M.A. Kalugin, A.S. Kulakov, S.V. Marin, A.P. Novosel'tsev, D.S. Oleynik, A.V. Pryanichnikov, E.A. Sukhino-Khomenko, D.A. Shkarovskiy, M.S. Yudkevich, The status of MCU-5, J. Phys. At. Nuclei 75 (14) (2012) 1634-1646. https://doi.org/10.1134/S1063778812140025
- A. Plompen, et al., The joint evaluated fission and fusion nuclear data library, JEFF-3.3, J. Eur. Phys. J. A 56 (2020) 181. ISSN 1434-6001. JRC118001.
- S.V. Zabrodskaya, A.V. Ignatyuk, V.N. Koshcheev, V.N. Manokhin, M.N. Nikolaev, V.G. Pronyaev, ROSFOND - Russian national library of neutron data, J. Problems of atomic science and technology, Ser. Nucl. constants 1 - 2 (2007) 3-21 (in Russian).
- A.G. Glazov, V.N. Leonov, V.V. Orlov, A.G. Sila-Novitskii, V.S. Smirnov, A.I. Filin, V.S. Tsikunov, Brest reactor and plant-site nuclear fuel cycle, J. At. Energy 103 (1) (2007) 501-508. https://doi.org/10.1007/s10512-007-0080-5
- P.A. Kizub, E.F. Mitenkova, Fission Neutron Source in Monte Carlo Calculations for Loosely Coupled Systems, Nuclear Safety Institute of the Russian Academy of Sciences, 2015, pp. 1-30. IBRAE-2015-02 (in Russian).
- E.F. Mitenkova, D.A. Koltashev, P.A. Kizub, Distribution of the fission reaction rate in a loosely coupled system for the "checkerboard" test model, J. At. Energy 116 (6) (2014) 345-349. https://doi.org/10.1007/s10512-014-9873-5