DOI QR코드

DOI QR Code

Lead-free inorganic metal perovskites beyond photovoltaics: Photon, charged particles and neutron shielding applications

  • Srilakshmi Prabhu (Department of Physics and Electronics, CHRIST University) ;
  • Dhanya Y. Bharadwaj (Department of Physics and Electronics, CHRIST University) ;
  • S.G. Bubbly (Department of Physics and Electronics, CHRIST University) ;
  • S.B. Gudennavar (Department of Physics and Electronics, CHRIST University)
  • Received : 2022.07.23
  • Accepted : 2022.11.28
  • Published : 2023.03.25

Abstract

Over the last few years, lead-free inorganic metal perovskites have gained impressive ground in empowering satellites in space exploration owing to their material stability and performance evolution under extreme space environments. The present work has examined the versatility of eight such perovskites as space radiation shielding materials by computing their photon, charged particles and neutron interaction parameters. Photon interaction parameters were calculated for a wide energy range using PAGEX software. The ranges of heavy charged particles (H, He, C, N, O, Ne, Mg, Si and Fe ions) in these perovskites were estimated using SRIM software in the energy range 1 keV-10 GeV, and that of electrons was computed using ESTAR NIST software in the energy range 0.01 MeV-1 GeV. Further, the macroscopic fast neutron removal cross-sections were also calculated to estimate the neutron shielding efficiencies. The examined shielding parameters of the perovskites varied depending on the radiation type and energy. Among the selected perovskites, Cs2TiI6 and Ba2AgIO6 displayed superior photon attenuation properties. A 3.5 cm thick Ba2AgIO6-based shield could reduce the incident radiation intensity to half its initial value, a thickness even lesser than that of Pb-glass. Besides, CsSnBr3 and La0.8Ca0.2Ni0.5Ti0.5O3 displayed the highest and lowest range values, respectively, for all heavy charged particles. Ba2AgIO6 showed electron stopping power (on par with Kovar) better than that of other examined materials. Interestingly, La0.8Ca0.2Ni0.5Ti0.5O3 demonstrated neutron removal cross-section values greater than that of standard neutron shielding materials - aluminium and polyethylene. On the whole, the present study not only demonstrates the employment prospects of eco-friendly perovskites for shielding space radiations but also suggests future prospects for research in this direction.

Keywords

Acknowledgement

One of the authors (SP) acknowledges the Department of Science and Technology, Government of India, New Delhi for the DST-Inspire Fellowship.

References

  1. Y. Wang, H. Sun, All-inorganic metal halide perovskite nanostructures: from photophysics to light-emitting applications, Small Methods 2 (2018), 1700252, https://doi.org/10.1002/smtd.201700252. 
  2. N. Hasan, M. Arifuzzaman, A. Kabir, Structural, elastic and optoelectronic properties of inorganic cubic FrBX3 (B = Ge, Sn; X = Cl, Br, I) perovskite: the density functional theory approach, RSC Adv. 12 (2022) 7961, https://doi.org/10.1039/D2RA00546H. 
  3. X. Zhuang, R. Sun, D. Zhou, S. Liu, Y. Wu, Z. Shi, Y. Zhang, B. Liu, C. Chen, D. Liu, H. Song, Synergistic effects of multifunctional lanthanides doped CsPbBrCl2 quantum dots for efficient and stable MAPbI3 perovskite solar cells, Adv. Funct. Mater. 32 (2022), 2110346, https://doi.org/10.1002/adfm.202110346. 
  4. F. Sani, S. Shafie, H.N. Lim, A.O. Musa, Advancement on lead-free organic-inorganic halide perovskite solar cells: a review, Materials 11 (2018) 1008, https://doi.org/10.3390/ma11061008. 
  5. Y. Tu, J. Wu, G. Xu, X. Yang, R. Cai, Q. Gong, W. Huang, Perovskite solar cells for space applications: progress and challenges, Adv. Mater. 33 (2021), 2006545, https://doi.org/10.1002/adma.202006545. 
  6. M.S. Al-Buriahi, V.P. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data, J. Australas. Ceram. Soc. 56 (2020) 1127, https://doi.org/10.1007/s41779-020-00457-1. 
  7. M.S. Al-Buriahi, S. Alomairy, C. Mutuwong, Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study, J. Australas. Ceram. Soc. 57 (2021a) 1107, https://doi.org/10.1007/s41779-021-00605-1. 
  8. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies, Polym. Adv. Tecnol. 32 (2021b) 2386, https://doi.org/10.1002/pat.5267. 
  9. B. Alshahrani, I.O. Olarinoye, C. Mutuwong, C. Sriwunkum, H.A. Yakout, H.O. Tekin, M.S. Al-Buriahi, Amorphous alloys with high Fe content for radiation shielding applications, Radiat. Phys. Chem. 183 (2021), 109386, https://doi.org/10.1016/j.radphyschem.2021.109386. 
  10. A. Saeed, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks, Radiat. Phys. Chem. 184 (2021), 109454, https://doi.org/10.1016/j.radphyschem.2021.109454. 
  11. Y. Miyazawa, M. Ikegami, H.W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, Tolerance of perovskite solar cell to high-energy particle irradiations in space environment, iScience 2 (2018) 148, https://doi.org/10.1016/j.isci.2018.03.020. 
  12. F. Lang, M. Jost, J. Bundesmann, A. Denker, S. Albrecht, G. Landi, N.H. Nickel, Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation, Energy Environ. Sci. 12 (2019) 1634, https://doi.org/10.1039/C9EE00077A. 
  13. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.H. Fang, C. Wang, J. Huang, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals, Nat. Photonics 10 (2016) 333, https://doi.org/10.1038/nphoton.2016.41. 
  14. S. Yang, Z. Xu, S. Xue, P. Kandlakunta, L. Cao, J. Huang, Organohalide lead perovskites: more stable than glass under gamma-ray radiation, Adv. Mater. 31 (2019), 1805547, https://doi.org/10.1002/adma.201805547. 
  15. S.E. Gulebaglan Oto, Z. Madak, E. Kavaz, Effective atomic numbers, electron densities and gamma rays build-up factors of inorganic metal halide cubic perovskites CsBX3 (B = Sn, Ge; X = I, Br, Cl), Radiat, Phys. Chem. 159 (2019) 195, https://doi.org/10.1016/j.radphyschem.2019.03.010. 
  16. E. Sakar, B. Alim, O.F. Ozpolat, B.C. Sakar, A. Baltakesmez, U. Akbaba, A surveying of photon and particle radiation interaction characteristics of some perovskite materials, Radiat. Phys. Chem. 189 (2021), 109719, https://doi.org/10.1016/j.radphyschem.2021.109719. 
  17. S. Prabhu, D.Y. Bharadwaj, R. Podder, S.G. Bubbly, S.B. Gudennavar, Natural polymer-based hydrogels as prospective tissue equivalent materials for radiation therapy and dosimetry, Phy. Eng. Sci. 44 (2021a) 1107, https://doi.org/10.1007/s13246-021-01047-6. 
  18. S. Prabhu, S. Jayaram, S.G. Bubbly, S.B. Gudennavar, A simple software for fast computation of photon and charged particle interaction parameters: PAGEX, Appl. Radiat. Isot. 176 (2021b), 109903, https://doi.org/10.1016/j.apradiso.2021.109903. 
  19. Y. Zhang, Q. Yao, J. Qian, X. Zhao, D. Li, Q. Mi, Thermoelectric properties of all-inorganic perovskite CsSnBr3: a combined experimental and theoretical study, Chem. Phys. Lett. 754 (2020), 137637, https://doi.org/10.1016/j.cplett.2020.137637. 
  20. Y. Abid, R. Moubah, M. Abid, H. Lassri Natik, Ab-initio investigation of the structural, electronic and optical properties of lead-free halide Cs2TiI6 double perovskites, Solid State Commun. 319 (2020), 114006, https://doi.org/10.1016/j.ssc.2020.114006. 
  21. P. Zhao, J. Su, Y. Guo, L. Wang, Z. Lin, Y. Hao, J. Chang, Cs2TiI6: a potential lead-free all-inorganic perovskite material for ultrahigh-performance photovoltaic cells and alpha-particle detection, Nano Res. 15 (2022) 2697, https://doi.org/10.1007/s12274-021-3801-5. 
  22. R. Lin, Q. Zhu, Q. Guo, Y. Zhu, W. Zheng, F. Huang, Dual self-trapped exciton emission with ultrahigh photoluminescence quantum yield in CsCu2I3 and Cs3Cu2I5 perovskite single crystals, J. Phys. Chem. C 124 (2020), 20469, https://doi.org/10.1021/acs.jpcc.0c07435. 
  23. F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, X. Tang, Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications, ACS Appl. Mater. Interfaces 12 (2020), 23094, https://doi.org/10.1021/acsami.0c03106. 
  24. L. Yang, J. Pang, Z. Tan, Q. Xiao, T. Jin, J. Luo, J. Tang, Oxide perovskite Ba2AgIO6 wafers for X-ray detection, Front. Optoelectron. 14 (2021) 473, https://doi.org/10.1007/s12200-021-1236-y. 
  25. S. Gharbi, A. Dhahri, E. Dhahri, R. Barille, M. Rguiti, L.H. Omari, J.F. Mariano, Impact of Ca Substitution on Structural, Optical, and the Colossal Permittivity Dielectric Properties of La1-xCaxNi0.5Ti0.5O3 (X = 0 and X = 0.2) Nanomaterials for Energy Storage Devices, 2022, https://doi.org/10.21203/rs.3.rs-1422917/v1. 
  26. B.Y. Li, X.M. Chen, M.D. Liu, Z.D. Yu, H.L. Lian, J.P. Zhou, Improved ferroelectric and piezoelectric properties of (Na0.5K0.5)NbO3 ceramics via sintering in low oxygen partial pressure atmosphere and adding LiF, J. Adv. Dielectr. 11 (2021), 2150012, https://doi.org/10.1142/S2010135X21500120. 
  27. C. Hu, Q. Zhu, Z. Sun, Z. Guo, L. Liu, L. Fang, Dielectric properties of unfilled tetragonal tungsten bronze Ba4PrFe0.5Nb9.5O30 ceramics, J. Wuhan Univ. Technol.-Materials Sci. Ed. 32 (2017) 904, https://doi.org/10.1007/s11595-017-1688-5. 
  28. L. Wu, H. Ning, Preparation and piezoelectric properties of CuO-added (Ag0.75Li0.1Na0.1K0.05)NbO3 lead-free ceramics, J. Wuhan Univ. Technol. Mater. Sci. 30 (2015) 724, https://doi.org/10.1007/s11595-015-1219-1. 
  29. M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping Power and Range Tables for Electrons, Protons, and Helium Ions, National Institute of Standards and Technology, Gaithersburg, MD, 2005 [Online], Version 1.2.3. https://physics.nist.gov/Star. (Accessed 10 October 2018). 
  30. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM - the stopping and range of ions in matter, Nucl. Instrum. Methods Phys. Res. B. 268 (2008) 1818, https://doi.org/10.1016/j.nimb.2010.02.091. 
  31. B. Tellili, Y. Elmahroug, C. Souga, Calculation of fast neutron removal cross sections for different lunar soils, Adv. Space Res. 53 (2014) 348, https://doi.org/10.1016/j.asr.2013.10.023. 
  32. A.E. Profio, Radiation Shielding and Dosimetry, John Wiley & Sons, 1979. 
  33. A.B. Chilton, J.K. Shultis, R.E. Faw, Principles of Radiation Shielding, Prentice-Hall, 1984. 
  34. M.F. Kaplan, Concrete Radiation Shielding, John Wiley & Sons, 1989. 
  35. C. Chanmuang, M. Naksata, T. Chairuangsri, H. Jain, C.E. Lyman, Microscopy and strength of borosilicate glass-to-Kovar alloy joints, Mater. Sci. Eng. 474 (2008) 218, https://doi.org/10.1016/j.msea.2007.04.016. 
  36. L. Narici, M. Casolino, L. Di Fino, M. Larosa, P. Picozza, A. Rizzo, V. Zaconte, Performances of Kevlar and Polyethylene as radiation shielding on-board the International Space Station in high latitude radiation environment, Sci. Rep. 7 (2017) 1, https://doi.org/10.1038/s41598-017-01707-2. 
  37. M. Naito, S. Kodaira, R. Ogawara, K. Tobita, Y. Someya, T. Kusumoto, S.I. Orimo, Investigation of shielding material properties for effective space radiation protection, Life Sci. Space Res. 26 (2020) 69, https://doi.org/10.1016/j.lssr.2020.05.001. 
  38. A. Khodadadi, R. Taherian, Investigation on the radiation shielding properties of lead silicate glasses modified by ZnO and BaO, Mater. Chem. Phys. 251 (2020), 123136, https://doi.org/10.1016/j.matchemphys.2020.123136. 
  39. M.S. Al-Buriahi, Z.A. Alrowaili, C. Eke, J.S. Alzahrani, I.O. Olarinoye, C. Sriwunkum, Optical and radiation shielding studies on tellurite glass system containing ZnO and Na2O, Optik 257 (2022a), 168821, https://doi.org/10.1016/j.ijleo.2022.168821. 
  40. M.S. Al-Buriahi, Z.A. Alrowaili, S. Alomairy, I.O. Olarinoye, C. Mutuwong, Optical properties and radiation shielding competence of Bi/Te-BGe glass system containing B2O3 and GeO2, Optik 257 (2022b), 168883, https://doi.org/10.1016/j.ijleo.2022.168883. 
  41. A. Edukondalu, S. Stalin, M.S. Reddy, C. Eke, Z.A. Alrowaili, M.S. Al-Buriahi, Synthesis, thermal, optical, mechanical and radiation-attenuation characteristics of borate glass system modified by Bi2O3/MgO, Appl. Phys. A 128 (2022) 1, https://doi.org/10.1007/s00339-022-05475-3.