DOI QR코드

DOI QR Code

Assessment of neutron-induced activation of irradiated samples in a research reactor

  • 투고 : 2022.07.19
  • 심사 : 2022.11.08
  • 발행 : 2023.03.25

초록

The combination of MCNP6 and the FISPACT codes was used to predict inventories of radioisotopes produced by neutron exposure of a sample in a research reactor. The detailed MCNP6 model of the Budapest Research Reactor and the specific irradiation geometry of the NAA channel was established, while realistic material cards were specified based on concentrations measured by PGAA and NAA, considering the precursor elements of all significant radioisotopes. The energy- and spatial distributions of the neutron field calculated by MCNP6 were transferred to FISPACT, and the resulting activities were validated against those measured using neutron-irradiated small and bulky targets. This approach is general enough to handle different target materials, shapes, and irradiation conditions. A general agreement within 10% has been achieved. Moreover, the method can also be made applicable to predict the activation properties of the near-vessel concrete of existing nuclear installations or assist in the optimal construction of new nuclear power plant units.

키워드

과제정보

This work was part of the V4-Korea RADCON Project (No. 127102) and received support from the National Research, Development and Innovation Fund of Hungary, financed under the NN_17 funding scheme. We thank the financial contribution of the TOURR project (Euratom research and training programme 2019-2020, grant agreement No. 945269). We also acknowledge the valuable collaboration with Peter Juhasz, David Hajdu and Viktoria Sugar, Gabor Patriskov, Tamas Bozso, as well as with the EMI Non-profit Llc.

참고문헌

  1. International Atomic Energy Agency, Applications of Research Reactors, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2014. https://www.iaea.org/publications/10491/applications-of-research-reactors.
  2. S.J. Parry, Activation Analysis I Neutron Activation, Encycl. Anal. Sci., 2019, pp. 15-24, https://doi.org/10.1016/B978-0-12-409547-2.14532-9.
  3. International Atomic Energy Agency, Research Reactor Application for Materials under High Neutron Fluence, INTERNATIONAL ATOMIC ENERGY AGENCY, Vienna, 2011. https://www.iaea.org/publications/8452/research-reactor-application-for-materials-under-high-neutron-fluence.
  4. A.Y. Konobeyev, U. Fischer, S.P. Simakov, Atomic displacement cross-sections for neutron irradiation of materials from Be to Bi calculated using the arc-dpa model, Nucl. Eng. Technol. 51 (2019) 170-175, https://doi.org/10.1016/j.net.2018.09.001.
  5. R. Szoke, I. Sziklai-Laszlo, Epiboron NAA: an option to analyze unfavorable matrices, J. Radioanal. Nucl. Chem. 275 (2008) 89-95, https://doi.org/10.1007/s10967-007-6977-6.
  6. F. De Corte, The k0-Standardization Method, Rijksuniversiteit Gent, Gent, 1987.
  7. L. Hamidatou, H. Benkharfia, Experimental and MCNP calculations of neutron flux parameters in irradiation channel at Es-Salam reactor, J. Radioanal. Nucl. Chem. 287 (2011) 971-975, https://doi.org/10.1007/s10967-010-0922-9.
  8. D. Chiesa, M. Carta, V. Fabrizio, L. Falconi, A. Grossi, M. Nastasi, M. Palomba, S. Pozzi, E. Previtali, P.G. Rancoita, B. Ranghetti, M. Tacconi, Characterization of TRIGA RC-1 neutron irradiation facilities for radiation damage testing, Eur. Phys. J. Plus. 135 (2020) 349, https://doi.org/10.1140/epjp/s13360-020-00334-7.
  9. V.K. Basenko, A.N. Berlizov, I.A. Malyuk, V. V Tryshyn, NAAPRO: a code for predicting results and performance of neutron activation analysis, J. Radioanal. Nucl. Chem. 263 (2005) 675-681, https://doi.org/10.1007/s10967-005-0642-8.
  10. J. RomeroeBarrientos, F. Molina, P. Aguilera, H.F. Arellano, Calculation of selfeshielding factor for neutron activation experiments using GEANT4 and MCNP, AIP Conf. Proc. 1753 (2016), 080018, https://doi.org/10.1063/1.4955388.
  11. M. Blaauw, D. Ridikas, S. Baytelesov, P.S.B. Salas, Y. Chakrova, C. Eun-Ha, R. Dahalan, A.H. Fortunato, R. Jacimovic, A. Kling, L. Munoz, N.M.A. Mohamed, D. Parkanyi, T. Singh, Van Dong Duong, Estimation of 99Mo production rates from natural molybdenum in research reactors, J. Radioanal. Nucl. Chem. 311 (2017) 409-418, https://doi.org/10.1007/s10967-016-5036-6.
  12. M. Fleming, T. Stainer, M. Gilbert, The FISPACT-II User Manual, UK Atomic Energy Authority, Culcham Science Centre, Oxfordshire, 2018.
  13. T.R. England, CINDER - A One-Point Depletion and Fission Product Program WAPD-TM-384, 1962.
  14. S.C. Tadepalli, P. Kanth, G. Indauliya, I. Saikia, S.P. Deshpande, P.V. Subhash, Development and validation of ACTYS, an activation analysis code, Ann. Nucl. Energy 107 (2017) 71-81, https://doi.org/10.1016/j.anucene.2017.04.016.
  15. C. V Parks, Overview of ORIGEN2 and ORIGEN-S: Capabilities and Limitations, 1992. United States, http://inis.iaea.org/search/search.aspx?orig_q=RN:23037442.
  16. D. Hajdu, E. Dian, K. Gmeling, E. Klinkby, C.P. Cooper-Jensen, J. Osan, P. Zagyvai, Experimental study of concrete activation compared to MCNP simulations for safety of neutron sources, Appl. Radiat. Isot. 171 (2021), 109644, https://doi.org/10.1016/j.apradiso.2021.109644.
  17. D. Hajdu, E. Dian, E. Klinkby, C.P. Cooper-Jensen, J. Osan, P. Zagyvai, Neutron activation properties of PE-B4C-concrete assessed by measurements and simulations, J. Neutron Res. 21 (2020) 87-94, https://doi.org/10.3233/JNR-190126.
  18. L. Szentmiklosi, D. Parkanyi, I. Sziklai-Laszlo, Upgrade of the Budapest neutron activation analysis laboratory, J. Radioanal. Nucl. Chem. 309 (2016), https://doi.org/10.1007/s10967-016-4776-7.
  19. D. Jozwiak-Niedzwiedzka, K. Gmeling, A. Antolik, K. Dziedzic, M.A. Glinicki, Assessment of long lived isotopes in Alkali-Silica resistant concrete designed for nuclear installations, Materials 14 (2021) 4595, https://doi.org/10.3390/ma14164595.
  20. L. Szentmiklosi, T. Belgya, Z. Revay, Z. Kis, Upgrade of the prompt gamma activation analysis and the neutron-induced prompt gamma spectroscopy facilities at the Budapest research reactor, J. Radioanal. Nucl. Chem. 286 (2010) 501-505. https://doi.org/10.1007/s10967-010-0765-4
  21. A.D. Loya, S.V. Escamilla, A.M.G. Torres, E.D.V. Gallegos, Verification of a Triga Mark III MCNP model for neutron flux calculations, Int. J. Nucl. Energy Sci. Technol. 10 (2016) 146, https://doi.org/10.1504/IJNEST.2016.077480.
  22. A. Borio di Tigliole, A. Cammi, D. Chiesa, M. Clemenza, S. Manera, M. Nastasi, L. Pattavina, R. Ponciroli, S. Pozzi, M. Prata, E. Previtali, A. Salvini, M. Sisti, TRIGA reactor absolute neutron flux measurement using activated isotopes, Prog. Nucl. Energy 70 (2014) 249-255, https://doi.org/10.1016/j.pnucene.2013.10.001.
  23. F. Puig, H. Dennis, SLOWPOKE-2 alternative core loading configurations analysis for highly improved reactor performance, Ann. Nucl. Energy 128 (2019) 216-230, https://doi.org/10.1016/j.anucene.2018.12.016.
  24. J.C. Rook, K.P. Weber, E.C. Corcoran, Advanced MCNP simulation of the neutron and photon flux and absorbed dose rates for the SLOWPOKE-2 nuclear reactor at the royal Military College of Canada, Nucl. Technol. 206 (2020) 1861-1874, https://doi.org/10.1080/00295450.2020.1720557.
  25. T.S. Nguyen, G.B. Wilkin, J.E. Atfield, Monte Carlo calculations applied to SLOWPOKE full-reactor analysis, AECL Nucl. Rev. 1 (2012) 43-46, https://doi.org/10.12943/anr.2012.00017.
  26. A. Septilarso, D. Kawasaki, S. Yanagihara, Radioactive waste inventory estimation of a research reactor for decommissioning scenario development, J. Nucl. Sci. Technol. 57 (2020) 253-262, https://doi.org/10.1080/00223131.2019.1667923.
  27. A. Raty, P. Kotiluoto, FiR 1 TRIGA activity inventories for decommissioning planning, Nucl. Technol. 194 (2016) 28-38, https://doi.org/10.13182/NT15-86.
  28. B. Volmert, M. Pantelias, R.K. Mutnuru, E. Neukaeter, B. Bitterli, Validation of MCNP NPP activation simulations for decommissioning studies by analysis of NPP neutron activation foil measurement Campaigns, EPJ Web Conf. 106 (2016), 05010, https://doi.org/10.1051/epjconf/201610605010.
  29. B. Babcsany, S. Czifrus, S. Feher, Methodology and conclusions of activation calculations of WWER-440 type nuclear power plants, Nucl. Eng. Des. 284 (2015) 228-237, https://doi.org/10.1016/j.nucengdes.2014.11.032.
  30. S. Kim, M.H. Kim, A study on MCNPX-CINDER90 system for activation analysis, in: Trans. Korean Nucl. Soc. Autumn Meet, 2014, pp. 5-8. Pyeongchang, Korea.
  31. V. Radulovic, R. Jacimovic, A. Pungercic, I. Vavtar, L. Snoj, A. Trkov, Characterization of the neutron spectra in three irradiation channels of the JSI TRIGA reactor using the GRUPINT spectrum adjustment code, Nucl. Data Sheets 167 (2020) 61-75, https://doi.org/10.1016/j.nds.2020.07.003.
  32. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Features of MCNP6, Ann. Nucl. Energy 87 (2016) 772-783, https://doi.org/10.1016/J.ANUCENE.2015.02.020.
  33. G. Zerovnik, M. Podvratnik, L. Snoj, On normalization of fluxes and reaction rates in MCNP criticality calculations, Ann. Nucl. Energy 63 (2014) 126-128, https://doi.org/10.1016/j.anucene.2013.07.045.
  34. Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168, https://doi.org/10.1016/J.ANUCENE.2014.08.058.
  35. UKAEA, CCFE-709 group structure, (n.d.). https://fispact.ukaea.uk/wiki/CCFE-709_group_structure.
  36. R.M.W. Overwater, J.E. Hoogenboom, Accounting for the thermal neutron flux depression in voluminous samples for instrumental neutron activation analysis, Nucl. Sci. Eng. 117 (1994) 141-157, https://doi.org/10.13182/NSE94-A28530.
  37. T. Vidmar, B. Vodenik, M. Necemer, Efficiency transfer between extended sources, Appl. Radiat. Isot. 68 (2010) 2352-2354, https://doi.org/10.1016/j.apradiso.2010.05.010.
  38. V. Szilagyi, K. Gmeling, S. Jozsa, I. Harsanyi, L. Szentmiklosi, Oligomictic allu-vial aggregates: petro-mineralogical and geochemical evaluation of sandy gravel formations on the middle course of the Danube (Hungary), Bull. Eng. Geol. Environ. 80 (2021) 5957-5977, https://doi.org/10.1007/s10064-021-02271-w.