DOI QR코드

DOI QR Code

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Lili Tong (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Xuewu Cao (School of Mechanical Engineering, Shanghai Jiao Tong University)
  • Received : 2022.01.05
  • Accepted : 2022.11.26
  • Published : 2023.03.25

Abstract

Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (U1967202).

References

  1. M.M.R. Williams, S.K. Loyalka, Aerosol Science: Theory and Practice, Pergamon Press., New York, 1991.
  2. L.E. Herranz, J. Ball, A. Auvinen, D. Bottomley, A. Dehbi, C. Housiadas, P. Piluso, V. Layly, F. Parozzi, M. Reeks, Progress in understanding key aerosol issues, Prog. Nucl. Energy 52 (2010) 120-127. https://doi.org/10.1016/j.pnucene.2009.09.013
  3. A. Bentaib, N. Meynet, A. Bleyer, Overview on hydrogen risk research and development activities: methodology and open issues, Nucl. Eng. Technol. 47 (2015) 26-32. https://doi.org/10.1016/j.net.2014.12.001
  4. H. Nowack, H.J. Allelein, Dry Aerosol Resuspension after a Hydrogen Deflagration in the Containment, International Conference Nuclear Energy for New Europe, Portoroz, 2007.
  5. J.H.S. Lee, M. Berman, Hydrogen combustion and its application to nuclear reactor safety, Adv. Heat Tran. 29 (1997) 59-127. https://doi.org/10.1016/S0065-2717(08)70184-9
  6. Y.B. Li, H. Zhang, J.J. Xiao, J.R. Travis, T. Jordan, Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using GASFLOW-MPI, Ann. Nucl. Energy 114 (2018) 1-10. https://doi.org/10.1016/j.anucene.2017.11.047
  7. A. Bujan, L. Ammirabile, A. Bieliauskas, B. Toth, ASTEC V1. 3 code SOPHAEROS module validation using the STORM experiments, Prog. Nucl. Energy 52 (8) (2010) 777-788. https://doi.org/10.1016/j.pnucene.2010.05.004
  8. N. Ardey, F. Mayinger, Aerosol resuspension by highly transient containment flow-insights by means of laser optical methods, Kerntechnik Bilingual Edition 63 (1998) 68-75. https://doi.org/10.1515/kern-1998-631-217
  9. C. Henry, J.P. Minier, Progress in particle resuspension from rough surfaces by turbulent flows, Prog. Energy Combust. Sci. 45 (2014) 1-53. https://doi.org/10.1016/j.pecs.2014.06.001
  10. J.W. Cleaver, B. Yates, Mechanism of detachment of colloidal particles from a flat substrate in a turbulent flow, J. Colloid Interface Sci. 44 (3) (1973) 464-474. https://doi.org/10.1016/0021-9797(73)90323-8
  11. M.F. Young, Liftoff Model for MELCOR, Sandia National Laboratories, Albuquerque New Mexico, 2015. SAND2015-6119.
  12. S. Morandi, F. Parozzi, A. Auvinen, Possible improvements of the aerosol resuspension model of ECART in the light of VTT tests, in: International Aerosol Conference, 2010. Helsinki, Finland, August 29-September 3, 2010.
  13. S. Paci, F. Parozzi, M.T. Porfiri, Validation of the ECART code for the safety analysis of fusion reactors, Fusion Eng. Des. 75 (2005) 1243-1246. https://doi.org/10.1016/j.fusengdes.2005.06.108
  14. M.T. Porfiri, N. Forgione, S. Paci, A. Rufoloni, Dust mobilization experiments in the context of the fusion plantsdSTARDUST facility, Fusion Eng. Des. 81 (2006) 1353-1358. https://doi.org/10.1016/j.fusengdes.2005.07.034
  15. S. Paci, N. Forgione, F. Parozzi, M.T. Porfiri, Bases for dust mobilization modelling in the light of stardust experiments, Nucl. Eng. Des. 235 (2005) 1129-1138. https://doi.org/10.1016/j.nucengdes.2005.01.015
  16. P. Chatelard, N. Reinke, S. Arndt, S. Belona, L. Cantrela, L. Carenini, K. Chevalier-Jabet, F. Cousin, J. Eckel, F. Jacq, C. Marchetto, C. Mun, L. Piar, ASTEC V2 severe accident integral code main features, current V2. 0 modelling status, perspectives, Nucl. Eng. Des. 272 (2014) 119-135. https://doi.org/10.1016/j.nucengdes.2013.06.040
  17. J. Xiao, T. Jordan, P. Royl, G. A. Necker, R. Redlingder, A. Svishchev, J. R. Travis, Gasflow: A Computational Fluid Dynamics Code for Gas, Aerosol, and Combustion, Volume 1, Theory and Computational Model, Karlsruhe Institute of Technology, Germany. 2014 67-70.
  18. F.J. Cabrejos, G.E. Klinzing, Incipient motion of solid particles in horizontal pneumatic conveying, Powder Technol. 72 (1992) 51-61. https://doi.org/10.1016/S0032-5910(92)85021-M
  19. B. Gonfiotti, S. Paci, Implementation and validation of a resuspension model in MELCOR 1.8.6 for fusion applications, Fusion Eng. Des. 122 (2017) 64-85. https://doi.org/10.1016/j.fusengdes.2017.09.006
  20. L.L. Humphries, B.A. Beeny, F. Gelbard, D.L. Louie, J. Phillips, MELCOR Computer Code Manuals Vol. 2: Reference Manual, Sandia National Laboratories, Albuquerque, 2017, pp. 770-771.
  21. G.L. Tan, X. Wang, Design of protective coatings for steel-made containment vessel of AP1000 nuclear power plant, Electroplating and Finishing 31 (9) (2012) 66-70.
  22. Regulatory Guide 1. 54, Service Level I, II and III Protective Coatings Applied to Nuclear Power Plants, U. S. Nuclear Regulatory Commission, 2010.
  23. M. Soltani, G. Ahmadi, On particle adhesion and removal mechanisms in turbulent flows, J. Adhes. Sci. Technol. 8 (1994) 763-785. https://doi.org/10.1163/156856194X00799
  24. M. Soltani, G. Ahmadi, Particle removal mechanisms under substrate acceleration, J. Adhes. Sci. Technol. 44 (1994) 161-175.
  25. R.B. Bird, W.E. Stewart, E.N. Lightfoot, in: W. Anderson, P. Kulek (Eds.), Transport Phenomena, John Wiley & Sons Inc., New York, 2006.
  26. B.J. McKeon, M.V. Zagarola, A.J. Smits, A new friction factor relationship for fully developed pipe flow, J. Fluid Mech. 538 (2005) 429-443. https://doi.org/10.1017/S0022112005005501
  27. F. Robbe-Valloire, Statistical analysis of asperities on a rough surface, Wear 249 (2001) 401-408. https://doi.org/10.1016/S0043-1648(01)00548-8
  28. G. Ahmadi, Mechanics of particle adhesion and removal, in: K.L. Mittal, R. Jaiswal (Eds.), Particle Adhesion and Removal, Wiley-Scrivener Publishing., New York, 2015, pp. 81-104.
  29. B. Nasr, S. Dhaniyala, G. Ahmadi, Particle Resuspension from Surfaces: overview of theoretical models and experimental data, in: R. Kohli, K.L. Mittal (Eds.), Developments in Surface Contamination and Cleaning: Types of Contamination and Contamination Resources, William Andrew Publishing., Cambridge, 2017, pp. 55-84.
  30. M.E. O'neill, A sphere in contact with a plane wall in a slow linear shear flow, Chem. Eng. Sci. 23 (1968) 1293-1298. https://doi.org/10.1016/0009-2509(68)89039-6
  31. M.W. Reeks, D. Hall, Kinetic models for particle resuspension in turbulent flows: theory and measurement, J. Aerosol Sci. 32 (2001) 1-31. https://doi.org/10.1016/S0021-8502(00)00063-X
  32. M.Y. Kim, Y.S. Bang, T.K. Park, D.Y. Lee, B.C. Lee, S.H. Park, Containment aerosol characterization during nuclear power plant severe accident, Part. Sci. Technol. 34 (5) (2016) 622-632. https://doi.org/10.1080/02726351.2015.1099066
  33. Y.R. Fu, J. Geng, D.W. Sun, Q.L. Mei, G.F. Huang, N. Pan, Aerosol natural removal analysis in containment for AP1000 nuclear power plant, Atomic Energy Sci. Technol. 51 (4) (2017) 700-705.
  34. Z.C. Gao, Z.F. Qiu, L.L. Tong, X.W. Cao, Aerosol pool scrubbing phenomena during the containment depressurization venting. Part I: scaling analysis, Ann. Nucl. Energy 165 (2022), 108764.
  35. A.C. De Los Reyes, C. Areia, G.D. Santi, International Standard Problem 40-Aerosol Deposition and Resuspension, Final Comparison Report, Organisation for Economic Co-Operation and Development-Nuclear Energy Agency., 1999.
  36. L. Biasi, A. De Los Reyes, M.W. Reeks, G.F. de Santi, Use of a simple model for the interpretation of experimental data on particle resuspension in turbulent flows, J. Aerosol Sci. 32 (10) (2001) 1175-1200. https://doi.org/10.1016/S0021-8502(01)00048-9
  37. S. Brambilla, M.J. Brown, Impact of the adhesion-force lever-arm "a" on the rock 'n' roll resuspension model and how to compute it from contact mechanics, J. Aerosol Sci. 143 (2020), 105525.
  38. H.R. Fan, P.C. Fan, W. Zhao, R.C. Zhao, Study on the characteristic of inorganic zinc coating for passive containment, Surf. Technol. 44 (6) (2015) 7-10.