DOI QR코드

DOI QR Code

Energy-saving optimization on active disturbance rejection decoupling multivariable control

  • Da-Min Ding (School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Hai-Ma Yang (School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Jin Liu (School of Electronic and Electrical Engineering, Shanghai University of Engineering Science) ;
  • Da-Wei Zhang (School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology) ;
  • Xiao-Hui Jiang (School of Mechanical Engineering, University of Shanghai for Science and Technology)
  • Received : 2022.05.23
  • Accepted : 2022.11.20
  • Published : 2023.03.25

Abstract

An industrial control process multiple-input multiple-output (MIMO) coupled system is analyzed in this study as an example of a Loss of Coolant Accident (LOCA) simulation system. Ordinary control algorithms can complete the steady state of the control system and even reduce the response time to some extent, but the entire system still consumes a large amount of energy after reaching the steady state. So a multivariable decoupled energy-saving control method is proposed, and a novel energy-saving function (economic function, Eco-Function) is specially designed based on the active disturbance rejection control algorithm. Simulations and LOCA simulation system tests show that the Eco-function algorithm can cope with the uncertainty of the multivariable system's internal parameters and external disturbances, and it can save up to 67% of energy consumption in maintaining the parameter steady state.

Keywords

Acknowledgement

This work is partially support by the Open Research Fund of Key Laboratory of Space Active Optical-Electro Technology, CAS: No. 2021ZDKF4, and Action Plan of Technological Innovation of Shanghai City Science and Technology Commission: 21S31904200, 22S31903700.

References

  1. L. Liu, S. Tian, D. Xue, T. Zhang, Y. Chen, S. Zhang, A review of industrial MIMO decoupling control, Int. J. Control Autom. Syst. 17 (5) (2019) 1246-1254, https://doi.org/10.1007/s12555-018-0367-4.
  2. A. Nuerlan, P. Wang, J. Wan, F. Zhao, Decoupling header steam pressure control strategy in multi-reactor and multi-load nuclear power plant, Prog. Nucl. Energy 118 (2020), 103073, https://doi.org/10.1016/j.pnucene.2019.103073.
  3. T. Chekari, R. Mansouri, M. Bettayeb, IMC-PID fractional order filter multi-loop controller design for multivariable systems based on two degrees of freedom control scheme, Int. J. Control Autom. Syst. 16 (2) (2018) 689-701, https://doi.org/10.1007/s12555-016-0699-x.
  4. M. Kim, T.-Y. Kuc, H. Kim, J.S. Lee, Adaptive iterative learning controller with input learning technique for a class of uncertain MIMO nonlinear systems, Int. J. Control Autom. Syst. 15 (1) (2017) 315-328, https://doi.org/10.1007/s12555-016-0049-z.
  5. L. Sun, J. Dong, D. Li, K.Y. Lee, A practical multivariable control approach based on inverted decoupling and decentralized active disturbance rejection control, Ind. Eng. Chem. Res. 55 (7) (2016) 2008-2019, https://doi.org/10.1021/acs.iecr.5b03738.
  6. Y. Cheng, Z. Chen, M. Sun, Q. Sun, Multivariable inverted decoupling active disturbance rejection control and its application to a distillation column process, Acta Autom. Sin. 43 (6) (2017) 1080-1088, https://doi.org/10.16383/j.aas.2017.c170137.
  7. B. li, L. Zeng, P. Zhang, Z. Zhu, Active magnetic suspension bearing sliding mode active anti-jamming decoupling control, Electr. Mach. Control/Dianji Yu Kongzhi Xuebao 25 (7) (2021).
  8. B. Sui, Z. Huang, Nonlinear mimo decoupling adrc control method based on real-time variable inverse matrix solution, Fire Control Command Control 46 (12) (2021) 8, https://doi.org/10.3969/j.issn.1002-0640.2021.12.007.
  9. S. Misra, M. Darby, S. Panjwani, M. Nikolaou, Design of experiments for control-relevant multivariable model identification: an overview of some basic recent developments, Processes 5 (3) (2017) 42, https://doi.org/10.3390/pr5030042.
  10. G. Scaglia, E. Serrano, A. Rosales, P. Albertos, Tracking control design in nonlinear multivariable systems: robotic applications, Math. Probl Eng. 2019 (2019), https://doi.org/10.1155/2019/8643515.
  11. A.M.d. Almeida, M.K. Lenzi, E.K. Lenzi, A survey of fractional order calculus applications of multiple-input, multiple-output (mimo) process control, Fractal. Fractional. 4 (2) (2020) 22, https://doi.org/10.3390/fractalfract4020022.
  12. S. Sheykhi, S. Talebi, M. Soroush, E. Masoumi, Thermal-hydraulic and stress analysis of ap1000 reactor containment during loca in dry cooling mode, Nucl. Sci. Tech. 28 (6) (2017) 1-13, https://doi.org/10.1007/s41365-017-0233-8.
  13. J. Chen, T. Zhou, L. Liu, X. Fang, Analysis on LOCA for CSR1000, Ann. Nucl. Energy 110 (2017) 903-908, https://doi.org/10.1016/j.anucene.2017.07.026.
  14. G. Wang, Y. Yan, S. Shi, X. Yang, M. Ishii, Experimental study on accident transients and flow instabilities in a PWR-type small modular reactor, Prog. Nucl. Energy 104 (2018) 242-250, https://doi.org/10.1016/j.pnucene.2017.10.004.
  15. M.-G. Kim, J.I. Lee, Implication of LOCA characteristics of large PWR and SMR for future development of intelligent nuclear power plant control system, Ann. Nucl. Energy 127 (2019) 237-247, https://doi.org/10.1016/j.anucene.2018.12.010.
  16. M. Machado, A. Carvalho, M. Santos, J. De Carvalho, Case study: level and temperature multivariable control and design via arduino through control loop decoupling, in: 2018 19th International Carpathian Control Conference (ICCC), IEEE, 2018, pp. 247-252, https://doi.org/10.1109/CarpathianCC.2018.8399636.
  17. S. Fragoso, J. Garrido, F. Vazquez, F. Morilla, Comparative analysis of decoupling control methodologies and h∞ multivariable robust control for variablespeed, variable-pitch wind turbines: application to a lab-scale wind turbine, Sustainability 9 (5) (2017) 713, https://doi.org/10.3390/su9050713.
  18. P. Navratil, L. Pekar, R. Matus, Control of a multivariable system using optimal control pairs: a quadruple-tank process, IEEE Access 8 (2019) 2537-2563, https://doi.org/10.1109/ACCESS.2019.2962302.
  19. S. Khandelwal, S. Aldhandi, K.P. Detroja, Centralized control with decoupling approach for large scale multivariable processes, in: TENCON 2019-2019 IEEE Region 10 Conference (TENCON), IEEE, 2019, pp. 2633-2638, https://doi.org/10.1109/TENCON.2019.8929297.
  20. C. Wang, W. Zhao, Z. Luan, Q. Gao, K. Deng, Decoupling control of vehicle chassis system based on neural network inverse system, Mech. Syst. Signal Process. 106 (2018) 176-197, https://doi.org/10.1016/j.ymssp.2017.12.032.
  21. S. Dasgupta, S. Sadhu, Decoupling controller design for a multivariable time delay system, in: 2020 IEEE 1st International Conference for Convergence in Engineering (ICCE), IEEE, 2020, pp. 189-194, https://doi.org/10.1109/ICCE50343.2020.9290724.
  22. C. Pu, J. Ren, A. Yu, Decoupling control of distillation column based on active disturbance rejection control, in: 2021 3rd International Conference on Applied Machine Learning (ICAML), IEEE, 2021, pp. 477-481, https://doi.org/10.1109/ICAML54311.2021.00106.
  23. B. Shi, D. Li, W. Guo, Y. Zhang, Study on multivariable decoupling control of small PWR pressurizer based on active disturbance rejection control, Nucl. Power Eng. 42 (5) (2021) 143-148, https://doi.org/10.13832/j.jnpe.2021.05.0143.
  24. J. Han, From PID to active disturbance rejection control, IEEE Trans. Ind. Electron. 56 (3) (2009) 900-906, https://doi.org/10.1109/TIE.2008.2011621.
  25. Z. Gao, Scaling and bandwidth-parameterization based controller tuning, Proc. Am. Control Conf. 6 (2006) 4989-4996, https://doi.org/10.1109/ACC.2003.1242516.
  26. Z. Wang, J. Yan, Y. Lin, T. Fang, J. Ma, Study on failure mechanism of prestressed concrete containments following a loss of coolant accident, Eng. Struct. 202 (2020), 109860, https://doi.org/10.1016/j.engstruct.2019.109860.
  27. L. Wang, W. Tian, P. Zhang, K. Zhang, Y. Zhang, M. Wang, Y. Xiang, S. Qiu, G. Su, H. Chang, Development and applicability analyses of ads-4 entrainment model in large advanced PWR, Nucl. Eng. Des. 356 (2020), 110379, https://doi.org/10.1016/j.nucengdes.2019.110379.
  28. Y.Q. Li, H.J. Chang, Z.S. Ye, F.F. Fang, Y. Shi, K. Yang, M.T. Cui, Analyses of acme integral test results on cap1400 small-break loss-of-coolant-accident transient, Prog. Nucl. Energy 88 (2016) 375-397, https://doi.org/10.1016/j.pnucene.2016.01.012