DOI QR코드

DOI QR Code

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong (National Research Center of Pumps, Jiangsu University) ;
  • Zeyu Chen (National Research Center of Pumps, Jiangsu University) ;
  • Runan Hua (Wuhan Second Ship Design and Research Institute) ;
  • Siyuan Hu (National Research Center of Pumps, Jiangsu University) ;
  • Chuanhan Fan (National Research Center of Pumps, Jiangsu University) ;
  • xingxin Xiao (National Research Center of Pumps, Jiangsu University)
  • Received : 2022.05.27
  • Accepted : 2022.10.30
  • Published : 2023.03.25

Abstract

Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 51879122, 52279087), Zhenjiang key research and development plan (GY2017001, GY2018025), the Open Research Subject of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University (szjj2017094, szjj2016068), -Outstanding Young backbone Teacher, Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu top six talent summit project (GDZB-017).

References

  1. D.P. Hujare, M.G. Karnik, Vibration responses of parallel misalignment in al shaft rotor bearing system with rigid coupling[J], Mater. Today 5 (11) (2018) 23863-23871, https://doi.org/10.1016/j.matpr.2018.10.178. 
  2. D.S. Thckmantel, F. Wenzel, K.L. Cavalca, Vibration signatures of a rotor-coupling-bearing system under angular misalignment[J], Mech. Mach. Theor. 133 (2019) 559-583, https://doi.org/10.1016/j.mechmachtheory.2018.12.014. 
  3. L.C. Gu, Z.W. Ma, Q.Q. Tian, et al., Application of instantaneous speed fluctuation-n signal in fault diagnosis of axial piston pump[J], J. Irrigat. Drain. Eng. 39 (7) (2021) 740-746. http://zzs.ujs.edu.cn/pgjx/EN/10.3969/j.issn.1674-8530.20.0107. 
  4. K. Wang, Y. He, H. Zhu, Integration between supercritical CO2 Brayton cycles a-nd molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J], Appl. Energy 195 (2017) 819-836, https://doi.org/10.1016/j.apenergy.2017.03.099. 
  5. Y.G. Lu, X.L. Wang, Q. Fu, et al., Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions[J], Nucl. Eng. Technol. 53 (7) (2021) 2207-2220, https://doi.org/10.1016/j.net.2021.01.015. 
  6. L. Wang, G.Y. Ji, fault diagnosis of rotor system based on EMD-fuzzy entropy and SVM[J], Noise. Vib. Control 32 (3) (2012) 171-176, https://doi.org/10.3969/j.issn.1006-1355.2012.03.040. 
  7. J.Q. Yan, J.Y. Yu, W.D. Zhuang, et al., Study on fault feature extraction of ECS turbine bearing by combination of EEMD and HMM[J], J. Phys. Conf. Ser. 2181 (1) (2022), https://doi.org/10.1088/1742-6596/2181/1/012037. 
  8. R.Z. Zhao, Z.J. Sun, Method of fault identification based on fusion of CEEMD fuzzy clustering[J], J. Vib. Eng. 33 (3) (2020) 629-635, https://doi.org/10.16385/j.cnki.issn.1004-4523.2020.03.023. 
  9. N.E. Huang, Z. Shen, S.R. Long, et al., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J], P. R-oy. Soc. A-Math. Phys. 454 (1971) (1998) 903-995, https://doi.org/10.1098/rspa.1998.0193. 
  10. Z.H. Wu, N.E. Huang, A study of the characteristics of white noise using the empirical mode decomposition method[J], P. R-oy. Soc. A-Math. Phys. 460 (2046) (2004) 1597-1611, https://doi.org/10.1098/rspa.2003.1221. 
  11. J.R. Yeh, J.S. Shieh, N.E. Huang, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method[J], Adv. Ada. Data An-al. 2 (2) (2010) 135-156, https://doi.org/10.1142/s1793536910000422. 
  12. D. Konstantin, Z. Dominique, Variational mode decomposition[J], IEEE.T. Signal. Process. 62 (3) (2014) 531-544, https://doi.org/10.1109/TSP.2013.2288675. 
  13. Z.X. Li, Y. Jiang, X.P. Wang, et al., Multi-mode separation and nonlinear feature extraction of hybrid gear failures in coal cutters using adaptive nonstationary vib-ration analysis[J], Nonlinear Dynam. 84 (1) (2015) 295-310, https://doi.org/10.1007/s11071-015-2505-3. 
  14. Q. Zhao, T. Han, D.X. Jiang, et al., Application of variational mode decomposition to feature isolation and diagnosis in a wind turbine[J], J. Vib. Eng. Technol. 7 (6) (2019) 639-646, https://doi.org/10.1007/s42417-019-00156-7. 
  15. L.F. Deng, A.H. Zhang, R.Z. Zhao, Intelligent identification of incipient rolling bearing faults based on VMD and PCA-SVM[J], Adv. Mech. Eng. 14 (1) (2022), 168781402110729, https://doi.org/10.1177/16878140211072990. 
  16. X.A. Yan, M.P. Jia, Application of csa-vmd and optimal scale morphological slicebispectrum in enhancing outer race fault detection of rolling element bearings[J], M-ech. Sys.t Signal. Process. 122 (2019) 56-86, https://doi.org/10.1016/j.ymssp.2018.12.022. 
  17. X.P. Ma, B.H. Li, M.L. Cai, et al., Bearing fault warning based on MFPH and improved VMD[J], Trans. Beijing Inst. Technol. 41 (11) (2021) 1179-1187, https://doi.org/10.15918/j.tbit1001-0645.2020.128. 
  18. D.Q. He, C.Y. Liu, Z.Z. Jin, et al., Fault diagnosis of flywheel bearing based on parameter optimization variational mode decomposition energy entropy and deep learning[J], Energy 239 (2021), 122108, https://doi.org/10.1016/j.energy.2021.122108. 
  19. B.Y. Song, Z.D. Wang, L. Zou, An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree Bezier curve[J], Appl. Soft Comput. 100 (2021), 106960, https://doi.org/10.1016/j.asoc.2020.106960. 
  20. P. Zhou, C.Y. Dong, X.Y. Chen, et al., A salp swarm algorithm basedon stepped t-ent chaos and simulated annealing[J], Acta Electron. Sin. 49 (9) (2021) 1724-1735, https://doi.org/10.12263/DZXB.20200593. 
  21. J.H. Fan, Y. Li, T. Wang, An improved African vultures optimization algorithm b-ased on tent chaotic mapping and time-varying mechanism[J], PLoS One 16 (11) (2021), 0260725, https://doi.org/10.1371/journal.pone.0260725. 
  22. H.D. Wang, S.E. Deng, J.X. Yang, et al., Incipient fault diagnosis of rolling bearing based on VMD with parameters optimized[J], J. Vib. Shock 39 (23) (2020) 38-46. http://jvs.sjtu.edu.cn/EN/.  https://doi.org/10.1155/2020/5659618
  23. T. Liu, C. Lu, Q.Y. Liu, et al., Coal and rock hardness identification based on EEMD and multi-scale permutation entropy[J], Entropy 23 (9) (2021), https://doi.org/10.3390/e23091113. 
  24. X.L. Zhao, M. Turk, W. Li, et al., A multilevel image thresholding segmentation a-lgorithm based on two-dimensional K-L divergence and modified particle swarm optimization[J], Appl. Soft Comput. 48 (2016) 151-159, https://doi.org/10.1016/j.asoc.2016.07.016. 
  25. Z.W. Chen, N. Shi, Y.F. J, et al., Lithium-ion batteries remaining useful life predi-ction based on BLS-RVM[J], Energy 234 (2021), 121269, https://doi.org/10.1016/j.energy.2021.121269. 
  26. A. Qin, Q. Hu, Y. Lv, et al., Concurrent fault diagnosis based on Bayesian discriminating analysis and time series analysis with dimensionless parameters[J], IEEE Sensors J. IEEE Sens. J. 19 (6) (2018) 2254-2265. https://doi.org/10.1109/JSEN.2018.2885377