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PURE-DIRECT-PROJECTIVE OBJECTS IN GROTHENDIECK

CATEGORIES

Batuhan Aydoğdu and Sultan Eylem Toksoy∗

Abstract. In this paper we study generalizations of the concept of pure-
direct-projectivity from module categories to Grothendieck categories.

We examine for which categories or under what conditions pure-direct-

projective objects are direct-projective, quasi-projective, pure-projective,
projective and flat. We investigate classes all of whose objects are pure-

direct-projective. We give applications of some of the results to comodule

categories.

1. Introduction

A right R-module M is said to be direct-projective if every submodule A of
M with M/A isomorphic to a direct summand of M is a direct summand of
M . Direct-projective modules were introduced by Nicholson in [12] and further
studies on direct-projective modules were done by Tiwary and Bharadwaj in
[18] and by Hausen in [10]. The notion of extending was generalized to purely
extending by Fuchs in [8] and basic characterisations were given by Clark in [2].
Motivated by their work, the notion of pure-direct-projective modules were in-
troduced and studied by Alizade and Toksoy in [1]. Namely, a right R-module
is said to be pure-direct-projective if every pure submodule A of which with
M/A isomorphic to a direct summand is a direct summand. We study general-
izations of these notions to abelian categories and Grothendieck categories, i.e.,
cocomplete abelian categories with a family of generators and exact direct limits
(see [17]). Namely, direct-projective objects and pure-direct-projective objects
respectively. Some generalizations of direct-projective modules to abelian cat-
egories were studied by Crivei and Kör in [3] and Crivei and Keskin Tütüncü
in [4]. An object M of an abelian category A is said to be direct-projective if
every subobject A of M with M/A isomorphic to a direct summand of M is
a direct summand. Let M and N be objects of an abelian category A. M is
called N -projective if given any epimorphism from N to an object L of A, any
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homomorphism from M to L can be lifted to a homomorphism from M to N .
M is said to be quasi-projective if it is M -projective. The following implications
hold.

projective ⇒ quasi-projective ⇒ direct-projective

An object M of a Grothendieck category A is said to be pure-projective if M
is relatively projective for every pure short exact sequence in A and it is said to
be pure-direct-projective if every pure subobject A of M with M/A isomorphic
to a direct summand of M is a direct summand. We also have the following
implications.

projective ⇒ pure-projective ⇒ pure-direct-projective

Since every direct summand is a pure subobject, every direct-projective object
is pure-direct-projective.

In Section 2, some definitions and a lemma which will be used in the next
sections of the paper are recalled.

In Section 3, the notion of direct-projective objects are generalized to abelian
categories. It is obtained that the class of direct-projective objects of an abelian
category A with enough projectives need not be closed under factor objects
and taking finite coproducts (Corollary 3.6 and Corollary 3.7). An abelian
category A is said to have enough projectives if every object of A is a quotient
object of a projective object (see [17]). It is shown that the coproduct of two
direct-projective objects of an abelian category A with enough projectives is
direct-projective if and only if every direct-projective object of A is projec-
tive (Proposition 3.8). Also it is obtained that a coalgebra C over a field is
hereditary if and only if every subcomodule of a projective right C-comodule
is direct-projective (Corollary 3.11).

In Section 4, the notion of pure-direct-projective objects are generalized to
Grothendieck categories. Direct summands of pure-direct-projective objects
of a Grothendieck category A are pure-direct-projective (Proposition 4.3). It
is obtained that the class of pure-direct-projective objects of a locally finitely
presented Grothendieck category A need not be closed under pure factors and
taking finite coproducts (Corollary 4.6 and Corollary 4.7). It is proved that
the coproduct of two pure-direct-projective objects of a locally finitely pre-
sented Grothendieck category A is pure-direct-projective if and only if every
pure-direct-projective object of A is pure-projective (Corollary 4.8). It is also
proved that a locally finitely presented Grothendieck category A, whose class of
pure-direct-projective objects is closed under finite coproducts, is pure-perfect
if and only if every pure-injective object of A is pure-direct-projective (Proposi-
tion 4.9). It is shown that a locally finitely presented Grothendieck category A
is regular if and only if every pure-direct-projective object of A is flat (Theorem
4.10). Also it is shown that a locally finitely presented Grothendieck category
A is regular if and only if every pure-direct-projective object of A is direct-
projective (Theorem 4.12). As a result of this, it is shown that a semiperfect
coalgebra C over a field is cosemisimple if and only if every pure-projective right
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C-comodule is projective if and only if every pure-direct-projective right C-
comodule is direct-projective (Corollary 4.14). It is proved for a locally finitely
presented Grothendieck category A that A is regular and the coproduct of two
pure-direct-projective objects is pure-direct-projective if and only if every pure-
direct-projective object of A is projective (Proposition 4.15). It is obtained for
a locally finitely presented regular Grothendieck category A that if the coprod-
uct of two pure-direct-projective objects is pure-direct-projective, then every
pure-direct-projective object of A is quasi-projective (Corollary 4.16). Also it is
proved that if every pure-direct-projective object of a locally finitely presented
Grothendieck category A is quasi-projective, then A is regular (Proposition
4.17). Let A be a locally finitely presented regular Grothendieck category with
enough projective objects whose class of pure-injective objects is closed un-
der extensions. Then A is pure hereditary if and only if every subobject of a
pure-projective object of A is pure-direct-projective (Proposition 4.20). It is
obtained that the class of pure-direct-projective objects of a locally finitely pre-
sented Grothendieck categoryA need not be closed under subobjects (Corollary
4.22).

In Section 5, classes all of whose objects are direct-projective and classes all
of whose objects are pure-direct-projective are investigated. It is proved that an
abelian category A is spectral if and only if A is perfect and every object of A
is direct-projective if and only if A is perfect and every factor object of a direct-
projective object of A is direct-projective (Theorem 5.2). It is obtained that a
locally finitely presented Grothendieck category A is semisimple if and only if
A has enough projectives and every object of A is direct-projective if and only
if has enough projectives the coproduct of two direct-projective objects of A is
direct-projective (Corollary 5.3). It is proved that a coalgebra C over a field is
cosemisimple if and only if C is right semiperfect and every right C-comodule
is direct-projective if and only if C is right semiperfect and every factor comod-
ule of a direct-projective right C-comodule is direct-projective (Corollary 5.5).
Finally, it is shown that a locally finitely presented Grothendieck category A is
pure-semisimple if and only if every object of A is pure-projective if and only
if every object of A is pure-direct-projective if and only if every pure quotient
of a pure-direct-projective object of A is pure-direct-projective (Theorem 5.7).

2. Preliminaries

Let A be an abelian category. For every morphism f : M −→ N in an A we
denote ker(f) : Ker(f) −→ M , coker(f) : N −→ Coker(f), im(f) : Im(f) −→
N and coim(f) : M −→ Coim(f) the kernel, the cokernel, the image and the
coimage of f respectively. Since A is abelian, Coim(f) ∼= Im(f). Recall that
a morphism f : A −→ B is called a split monomorphism (or section) if there
is a morphism g : B −→ A such that gf = 1A and a split epimorphism (or
retraction) if there is a morphism g : B −→ A such that fg = 1B .
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Definition 2.1. [15, p. 159] Consider a class E of short exact sequences
of an abelian category A, such that every sequence isomorphic to a sequence
in E also is in E . The corresponding class of monomorphisms (epimorphisms)
is denoted by Em (Ee). E is called a proper class if it satisfies the following
conditions.

P1. Every split short exact sequence is in E .
P2. If α, β ∈ Em, then βα ∈ Em if defined.
P3. If α, β ∈ Ee, then βα ∈ Ee if defined.
P4. If βα ∈ Em, then α ∈ Em.
P5. If βα ∈ Ee, then β ∈ Ee.

It is well known that Em (Ee) is closed under pushouts (pullbacks).

Definition 2.2. [16, p. 352] An object M of a category A is said to
be finitely generated if, whenever M =

∑
Mi for a directed family (Mi)I of

subobjects of M , there is an i ∈ I such that M = Mi.

Definition 2.3. [16, p. 352] M is called a finitely presented object if it
is finitely generated and every epimorphism f : L −→ M , where L is finitely
generated, has a finitely generated kernel.

Definition 2.4. [16, p. 352] A is said to be locally finitely presented if it
has a family of finitely presented generator.

Definition 2.5. [16, p. 353] A short exact sequence

0 //L //M //N //0

in a Grothendieck category A is said to be pure if every finitely presented
object is relatively projective to it. In this case L is a pure subobject of
M . Also an object M of A is said to be flat if every short exact sequence
0 //K //L //M //0 is pure.

Lemma 2.6. [16, Lemma 6 (i)] The class Pure of pure exact sequences of
a Grothendieck category A forms a proper class.

3. Direct-projective objects in abelian categories

We recall some generalizations of projectivity namely direct-projectivity.
The concept of direct-projectivity was introduced by Nicholson in [12] as a
generalization of quasi-projectivity for module categories. In this section we
generalize the concept of direct-projective modules from module categories to
abelian categories and we give some applications to comodule categories.

Definition 3.1. [3, Section 5, p. 810] An objectM of an abelian category A
is said to be direct-projective if every subobject A of M with M/A isomorphic
to a direct summand of M is a direct summand.
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Proposition 3.2, Proposition 3.3, Lemma 3.4, and Theorem 3.5 are immedi-
ate generalizations of results in [18] and [10] from module categories to abelian
categories.

Proposition 3.2. Let A be an abelian category. Then the following are
equivalent for an object M of A.

(1) Given any direct summand A of M with projection map π : M −→ A,
for each epimorphism α : M −→ A there exists an endomorphism γ of
M such that αγ = π.

(2) M is direct-projective.
(3) Every exact sequence

0 //K //N //L //0

with N an epimorphic image of M and L a direct summand of M splits.

Proposition 3.3. Direct summands of direct-projective objects of an abelian
category A are direct-projective.

Lemma 3.4. If M⊕N is direct-projective, then every short exact sequence

0 //K //M //N //0

in an abelian category A splits.

Theorem 3.5. Let M be a projective object of an abelian category A and
f : M −→ N be an epimorphism. Then N is projective if and only if M ⊕N
is direct-projective.

Corollary 3.6. Let A be an abelian category with enough projective ob-
jects. Then the class of direct-projective objects of A need not be closed under
factor objects.

Corollary 3.7. Let A be an abelian category with enough projective ob-
jects. Then the class of direct-projective objects of A need not be closed under
taking finite coproducts.

The following result generalizes [18, Proposition 2.6].

Proposition 3.8. Let A be an abelian category having enough projective
objects. The coproduct of two direct-projective objects of A is direct-projective
if and only if every direct-projective object of A is projective.

Proof. (⇒) Let M be a direct-projective object of A. Since A has enough
projectives, there exists a projective object P of A and an epimorphism f :
P −→ M . Since projective objects are direct-projective, P is direct-projective.
Then P ⊕M is direct-projective by assumption and therefore M is projective
by Theorem 3.5.
(⇐) Clear.
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Recall that an abelian category A is said to be hereditary if and only if every
subobject of a projective object is projective if and only if every quotient object
of an injective object is injective. A is called semihereditary if every finitely
generated subobject of a projective object is projective and cosemihereditary
if every finitely cogenerated quotient object of an injective object is injective.

Theorem 3.9. Assume that A is an abelian category with enough projec-
tive objects. Then the following conditions are equivalent.

(1) A is (semi)hereditary.
(2) Every (finitely generated) subobject of a projective object of A is direct-

projective.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (1) Let P be a projective object and N be a subobject of P . Since A has
enough projectives, there is an epimorphism f : P1 −→ N with P1 projective.
Now P1 ⊕N is a subobject of the projective object P1 ⊕ P and therefore it is
direct-projective by assumption. Then N is projective by Theorem 3.5.

Let R be a unitary ring and Mod(R) be the category of right R-modules.
Mod(R) is a locally finitely generated Grothendieck category with enough in-
jectives and enough projectives (see [17]). Mod(R) is hereditary if and only if
the ring R is right hereditary (see [3]). Then we have the following result for
module categories.

Corollary 3.10. [21, Theorem 4] Let R be a unitary ring. Then the fol-
lowing conditions are equivalent.

(1) R is right hereditary.
(2) Every submodule of a projective right R-module is direct-projective.

Let C be a coalgebra over a field and MC be the category of right C-
comodules. MC is a locally finitely generated Grothendieck category. MC

has enough projectives if C is a semiperfect coalgebra (see [11, Remarks (1) on
p.1525]). The category MC is hereditary if and only if C is a (left and right)
hereditary coalgebra (see [11]). Then we have the following result for comodule
categories.

Corollary 3.11. Let C be a semiperfect coalgebra over a field. Then the
following conditions are equivalent.

(1) C is hereditary.
(2) Every subcomodule of a projective right C-comodule is direct-projective.

4. Pure-direct-projective objects in Grothendieck categories

Recently the concept of pure-direct-projectivity has introduced and studied
by Alizade and Toksoy in [1]. In this section we generalize the concept of pure-
direct-projectivity from module categories to Grothendieck categories and we
give applications of some of the results to comodule categories.
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Definition 4.1. Let A be a Grothendieck category. An object M of A is
said to be pure-direct-projective if every pure subobject A of M with M/A
isomorphic to a direct summand of M is a direct summand of M .

Proposition 4.2. [19, Proposition 3.3] The following are equivalent for an
object M of a Grothendieck category A.

(1) Given a direct summand N of M with the projection p : M −→ N and
any epimorphism f : M −→ N with Ker(f) pure in M there exists an
endomorphism g : M −→ M such that fg = p.

(2) M is pure-direct-projective.
(3) Any epimorphism f : M −→ N with N a direct summand of M and

Ker(f) pure in M splits.

Proof. (1) ⇒ (2) Let K be a pure subobject of M such that M/K is iso-
morphic to a direct summand N of M . Let f : N −→ M/K be that isomor-
phism. By assumption there exists an endomorphism g of M such that fg = p,
where p : M −→ N is the projection map. Define h : M −→ M by h = gi,
i : N −→ M being the inclusion map. Then fh = f(gi) = (fg)i = i holds, so
f splits. Thus K is a direct summand of M.
(2) ⇒ (3) Clear.
(3) ⇒ (1) Let N be a direct summand of M , p : M −→ N the canonical
projection map and f : M −→ N an epimorphism with Ker(f) pure in M .
By assumption, f splits. So there exists a morphism h : N −→ M such that
fh = 1N . Define g : M −→ M by g = hp, where p : M −→ N is the canonical
projection map. Then fg = f(hp) = (fh)p = 1Np = p.

Proposition 4.3. Direct summands of pure-direct-projective objects of a
Grothendieck category A are pure-direct-projective.

Proof. Let M be a pure-direct-projective object of A and N be a direct
summand of M and π′ : M −→ N be the projection map. Let K be a pure
subobject of N and π : N −→ K be the projection map. Let f : N −→ K be
an epimorphism with Ker(f) pure in N and f ′ : M −→ N be an epimorphism.
Then ff ′ : M −→ K is also an epimorphism and since Ker(f) is a pure
subobject of N and N is a pure subobject of M , Ker(f) is a pure subobject
of M by [16, Lemma 6 (i)]. Since M is pure-direct-projective, there is an
endomorphism g : M −→ M such that ff ′g = ππ′. Let i : K −→ N and
i′ : N −→ M be inclusion maps. Put h = f ′gi′. Then fh = ff ′gi′ = ππ′i′ =
π1N = π. Thus N is pure-direct-projective by Proposition 4.2.

Lemma 4.4. If M ⊕ N is pure-direct-projective, then every pure exact
sequence of the form

0 //K //M //N //0

in a Grothendieck category A splits.
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Proof. Let

0 //K //M
g //N //0

be a pure exact sequence in A. Suppose that M ⊕N is pure-direct-projective
in A. Let p1 : M ⊕N −→ M and p2 : M ⊕N −→ N be canonical projections.
SinceM⊕N is pure-direct-projective, there exists an endomorphism h ofM⊕N
such that gp1h = p2 by Proposition 4.2. Define f : N −→ M by f = p1hi2
where i : N −→ M⊕N is the inclusion map. Then gf = g(p1hi2) = p2i2 = 1N .
Thus the sequence splits.

Theorem 4.5. Let A be a Grothendieck category and

0 //K //M //N //0

be a pure exact sequence with M pure-projective. Then M ⊕N is pure-direct-
projective if and only if N is pure-projective.

Proof. (⇒) Suppose that M ⊕ N is pure-direct-projective. Then the se-
quence

0 //K //M //N //0

splits by Lemma 4.4. Then N is pure-projective by [7, Proposition 4.1 (1)].
(⇐) M ⊕ N is pure-projective by [7, Proposition 4.1 (1)] and therefore it is
pure-direct-projective.

Recall that every locally finitely presented Grothendieck category has enough
pure-projective objects (see [16, Lemma 6(ii)]).

Corollary 4.6. Let A be a locally finitely presented Grothendieck category.
The class of pure-direct-projective objects of A need not be closed under pure
factors.

Corollary 4.7. Let A be a locally finitely presented Grothendieck category.
The class of pure-direct-projective objects of A need not be closed under taking
finite coproducts.

Corollary 4.8. Let A be a locally finitely presented Grothendieck category.
Every pure-direct-projective object of A is pure-projective if and only if the
coproduct of two pure-direct-projective objects of A is pure-direct-projective.

Proof. (⇒) Clear by [7, Proposition 4.1].
(⇐) Let M be a pure-direct-projective object of A. Since A has enough pure-
projectives by [16, Lemma 6(ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Since P is pure-projective, P is pure-direct-projective
and therefore P ⊕M is pure-direct-projective by assumption . So M is pure-
projective by Theorem 4.5.
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Recall that a pure epimorphism f : M −→ N in A is purely minimal
if a morphism g : X −→ M is a pure epimorphism whenever fg is a pure
epimorphism. A locally finitely presented Grothendieck category A is said to
be pure-perfect if every object M in A has a pure-projective cover, i.e. there
exists a purely minimal epimorphism from a pure-projective object P to M
(see [13]). An object M of a Grothendieck category A is pure-injective if it is
relatively injective for every pure exact sequence in A.

Proposition 4.9. Let A be a locally finitely presented Grothendieck cate-
gory whose class of pure-direct-projective objects is closed under finite coprod-
ucts. Then the following conditions are equivalent.

(1) A is pure-perfect.
(2) Every pure-injective object of A is pure-direct-projective.

Proof. (1) ⇒ (2) Suppose that A is pure-perfect and I is a pure-injective
object of A. Then I is pure-projective by [13, Theorem 6.3] and therefore I is
pure-direct-projective.
(2) ⇒ (1) Let I be a pure-injective object of A. Since there are enough pure-
projective objects in A by [16, Lemma 6 (ii)], there is a pure exact sequence

0 //K //P //I //0

with P pure-projective. Now P ⊕ I is pure-direct-projective by the statement.
Then I is pure-projective by Theorem 4.5 and therefore A is pure-perfect by
[13, Theorem 6.3].

Recall that a Grothendieck category A is said to be regular if every object
M of A is regular in the sense that every short exact sequence

0 //L //M //N //0

is pure in A (see [20]).

Theorem 4.10. Let A be a locally finitely presented Grothendieck cate-
gory. Then the following conditions are equivalent.

(1) A is regular.
(2) Every pure-direct-projective object is flat.

Proof. (1) ⇒ (2) Clear by [16, Theorem 4].
(2) ⇒ (1) Let M be an object of A. Since A has enough pure-projective objects
by [16, Lemma 6 (ii)], we have a pure exact sequence

0 //K //P //M //0

with P pure-projective. So P is flat by assumption. Then M is flat by [5,
Proposition 2.2. (c) (i)].

Lemma 4.11. Let A be a locally finitely presented Grothendieck category.
Then the followings are equivalent.

(1) A is regular.
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(2) Every pure-projective object is projective.
(3) Every pure-projective object is flat.

Proof. (1) ⇒ (2) Since A is regular, every short exact sequence in A is pure
by [16, Theorem 4].
(2) ⇒ (3) Since every projective object is flat by [16, Lemma 7 (i)], it is clear.
(3) ⇒ (1) Let M be an object. Since A has enough pure-projective objects by
[16, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Now P is flat by assumption and therefore M is flat
by [5, Proposition 2.2 (c) (ii)]. Thus A is regular by [16, Theorem 4].

Theorem 4.12. LetA be a locally finitely presented Grothendieck category
with enough projective objects. Then the following conditions are equivalent.

(1) A is regular.
(2) Every pure-direct-projective object of A is direct-projective.

Proof. (1) ⇒ (2) Clear since every short exact sequence is pure exact in a
regular category by [16, Theorem 4].
(2) ⇒ (1) Let M be a pure-projective object in A. Since A has enough pro-
jectives, there is a projective object P and an epimorphism f : P −→ M .
Since P is projective, it is pure-projective and so M ⊕ P is pure-projective by
[7, Proposition 4.1 (1)]. Therefore M ⊕ P is direct-projective by assumption.
Thus M is projective by Theorem 3.5 and so A is regular by Lemma 4.11.

Now we have the following corollary of Theorem 4.12 for module categories.

Corollary 4.13. [1, Proposition 2.10] The following conditions are equiv-
alent for a unitary ring R.

(1) R is a von Neumann regular ring.
(2) Every pure-projective right R-module is projective.
(3) Every pure-direct-projective right R-module is direct-projective.

Also we have the following corollary of Theorem 4.12 for comodule cate-
gories.

Corollary 4.14. Let C be a semiperfect coalgebra over a field. Then the
following statements are equivalent.

(1) C is cosemisimple.
(2) Every pure-projective right C-comodule is projective.
(3) Every pure-direct-projective right C-comodule is direct-projective.

Proof. C has enough projectives if and only if C is right semiperfect (see
[6, Theorem 3.2.3]). Since every cosemisimple coalgebra is right semiperfect, C
has enough projectives. C is cosemisimple if and only if every right C-comodule
is injective if and only if every right C-comodule is projective by [6, Theorem
3.1.5]. If a coalgebra C over a field is cosemisimple, then the category of right
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C-comodules MC is regular. Conversely, if MC is regular, then every right
C-comodule K is FP -injective, that is every short exact sequence of the form
0 //K //M //N //0 is pure (see [16]). The category of right C-
comodulesMC coincides with the category σ[∗C C] of submodules of C-generated
left C∗-modules (see [16, Section 2.5]). Since MC is locally noetherian, every
FP -injective right C-comodule is injective by [20, 35.7]. Therefore every right
C-comodule is injective. Hence C is cosemisimple by [16, Theorem 3.1.5].

Proposition 4.15. Let A be a locally finitely presented Grothendieck cat-
egory. Then the following conditions are equivalent.

(1) A is regular and the coproduct of two pure-direct-projective objects is
pure-direct-projective.

(2) Every pure-direct-projective object of A is projective.

Proof. (1) ⇒ (2) Let M be a pure-direct-projective object of A. Since every
locally finitely presented Grothendieck category A has enough pure-projective
objects by [16, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. Now M ⊕ P is pure-direct-projective by assumption.
Then M is pure-projective by Theorem 3.5 and therefore M is projective by
Theorem 4.11.
(2) ⇒ (1) Let M be a pure-direct-projective object of A. Then M is projective
by assumption and therefore it is flat by [16, Lemma 7 (i)]. So A is regular by
Theorem 4.10. The rest of the proof is clear.

Corollary 4.16. Let A be a locally finitely presented regular Grothendieck
category. If the coproduct of two pure-direct-projective objects is pure-direct-
projective, then every pure-direct-projective object of A is quasi-projective.

Proposition 4.17. Let A be a locally finitely presented Grothendieck cat-
egory with enough projective objects. If every pure-direct-projective object is
quasi-projective, then A is regular.

Proof. Let M be a finitely presented object of A. So M is pure-projective.
Since there are enough projective objects in A, there is an epimorphism f :
P −→ M with P projective. Now P ⊕ M is pure-projective and therefore it
is pure-direct-projective. So P ⊕ M is quasi-projective by assumption. Since
every quasi-projective object is direct-projective, P ⊕ M is direct-projective.
Then M is projective by Theorem 3.5. Hence A is regular by [15, Theorem
4].

Definition 4.18. A Grothendieck category A is said to be pure hereditary
if every quotient of an injective object of A is pure-injective.

Recall that a class C of objects of a category is said to be closed under
extensions if A,M/A ∈ C implies that M ∈ C. In this case M is an extension
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of A and M/A. We have the following result which generalizes [9, Proposition
2.14].

Proposition 4.19. Suppose thatA is a Grothendieck category with enough
projective objects and the class of pure-injective objects in A is closed under
extensions. Then the following conditions are equivalent.

(1) A is pure hereditary.
(2) Every pure subobject of any projective object is projective.
(3) Every flat object is of projective-dimension at most 1.

Proof. (1) ⇒ (2) Let M be a projective object of A and P be a pure
subobject of M . Let β : I −→ L be an epimorphism with I injective and let
f : P −→ L be a morphism from P to L. Since A is pure hereditary, L is
pure-injective. So there exists a morphism g : M −→ L such that gh = f .
Since M is projective, there exists a morphism α : M −→ I such βα = g. Put
γ = αh : P −→ I. Then gives βγ = β(αh) = gh = f . Hence P is projective.
(2) ⇒ (3) Let M be a flat object. Since A has enough projectives, there exists
an epimorphism f : P −→ M with P projective. Then we have the short exact
sequence

0 //K //P //M //0

which is pure since M is flat. So K is pure in P and therefore K is projective
by assumption. Thus projective dimension of M is at most 1.
(3) ⇒ (1) Let I be an injective object of A and N be a subobject of I. Then
we have a short exact sequence

0 //N //I //I/N //0 .

Let M be a flat object of A. Since projective dimension of M is at most
1 by assumption, Ext1A(M, I/N) = 0. So I/N is a cotorsion object of A.
Therefore I/N is pure-injective by [21, Theorem 3.5.1] whose proof works in
locally finitely presented Grothendieck categories. So A is pure-hereditary.

Corollary 4.20. Let A be a locally finitely presented regular Grothendieck
category with enough projective objects. If the class of pure-injective objects
is closed under extensions then the following conditions are equivalent.

(1) A is pure hereditary.
(2) Every subobject of a projective object of A is pure-direct-projective.
(3) Every subobject of a pure-projective object ofA is pure-direct-projective.

Proof. Clear by Theorem 3.9 and Proposition 4.19.

We have the following result for module categories.

Corollary 4.21. [1, Corollary 2.7] Let R be a von Neumann regular ring.
Then the following conditions are equivalent.

(1) R is pure hereditary.
(2) Every submodule of a projective right R-module is pure-direct-projective.
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(3) Every submodule of a pure-projective right R-module is pure-direct-
projective.

Also we have the following result.

Corollary 4.22. Let A be a locally finitely presented Grothendieck cate-
gory. Then the class of pure-direct-projective objects of A need not be closed
under subobjects.

5. Classes all of whose objects are (pure-)direct-projective

In this section we investigate classes of (Grothendieck) abelian categories all
of whose objects are (pure-)direct-projective. Recall that a morphism f : P −→
M is said to be projective cover of an object M of an abelian category A if P is
projective and Ker(f) ≪ P , i.e. for any subobject X of M , Ker(f) +X = M
implies X = M . An abelian category A is called a perfect category if every
object of A has a projective cover. If every subobject L of an object M of an
abelian categoryA contains a direct summandK ofM such that L/K ≪ M/K,
then M is said to be lifting (see [4]).

Theorem 5.1. [4, Theorem 3.5] Let A be an abelian category. Then A is
perfect if and only if it has enough projectives and every projective object of
A is lifting.

Recall that an abelian category A is called a spectral category if every short
exact sequence in A splits (see [17, Definition p.129]).

Theorem 5.2. Let A be an abelian category. Then the following conditions
are equivalent.

(1) A is spectral.
(2) A is perfect and every object of A is direct-projective.
(3) A is perfect and every factor object of a direct-projective object is direct-

projective.

Proof. (1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (2) Let M be an object of A. Since A has enough projective objects
by Theorem 5.1, there exists an epimorphism f : P −→ M with P projective.
Therefore M is direct-projective being a quotient object of a direct-projective
object P .
(2) ⇒ (1) Let M be an object of A. Since there are enough projective objects
in A by Theorem 5.1, there is a short exact sequence

0 //K //P //M //0

with P projective. Since every object of A is direct-projective, P ⊕ M is
direct-projective. Then the sequence splits by Corollary 3.4. Therefore A is
spectral.
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Recall that a Grothendieck category A is called semisimple if every object
of A is semisimple, that is, a coproduct of simple objects. A locally finitely
generated Grothendieck category is semisimple if and only if its spectral (see
[17, Proposition 6.7, Chapter V]). Therefore we have the following result which
generalizes [21, Theorem 9].

Corollary 5.3. LetA be a locally finitely generated Grothendieck category.
Then the following conditions are equivalent.

(1) A is semisimple.
(2) A has enough projectives and every object of A is direct-projective.
(3) A has enough projectives and the coproduct of two direct-projective ob-

jects is direct-projective.

Proof.
(1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (1) Let S be a simple object in A. Since A has enough projective objects,
there exists an epimorphism f : P −→ S with P projective. S is clearly quasi-
projective and therefore direct-projective. So P ⊕ S is direct-projective by
assumption. Thus S is projective by Theorem 3.5. Then A is semisimple
by [20, 20.7] whose proof works for locally finitely generated Grothendieck
categories.

Remark 5.4. Let C be a coalgebra over a field. Then the category MC of
right C-comodules is spectral if and only if MC is semisimple if and only if C
is cosemisimple.

Now we have the following result of Theorem 5.2 for comodule categories.

Corollary 5.5. Let C be a coalgebra over a field. Then the following
conditions are equivalent.

(1) C is cosemisimple.
(2) C is right semiperfect and every right C-comodule is direct-projective.
(3) C is right semiperfect and every factor comodule of a direct-projective

right C-comodule is direct-projective.

A Grothendieck category A is said to be pure-semisimple if it is locally
finitely presented and each of its objects is pure-projective ([14]). A locally
finitely presented Grothendieck category A is pure-semisimple if it has pure
global dimension zero, which means that each of its objects is a direct summand
of a coproduct of finitely presented objects ([13]). A is pure-semisimple if and
only if it satisfies the pure noetherian property a coproduct of any family of
pure-injective objects in A is pure-injective (see [14, Theorem 1.9]).

Lemma 5.6. Let A be a finitely presented Grothendieck category. Then
the following conditions are equivalent.

(1) A is pure-semisimple.
(2) Every pure exact sequence in A splits.
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Proof. (1) ⇒ (2) By definition every object in A is pure-projective. Since
any pure exact sequence ending with pure-projective object splits by [20, 33.6]
whose proof works for locally finitely presented Grothendieck categories, every
pure-exact sequence in A splits.
(2) ⇒ (1) Suppose that every pure exact sequence in A splits. Let M be an
object of A. We want to show that M is pure-projective. Since every locally
finitely presented Grothendieck category has enough pure-projective objects by
[16, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //P //M //0

with P pure-projective. This sequence splits by assumption and therefore M is
a direct summand of the pure-projective object P . Then M is pure-projective
by [7, Proposition 4.1]. This means that A is pure-semisimple.

Theorem 5.7. Let A be a locally finitely presented Grothendieck category.
Then the following conditions are equivalent.

(1) A is pure-semisimple.
(2) Every object of A is pure-projective.
(3) Every object of A is pure-direct-projective.
(4) Every pure quotient of a pure-direct-projective object is pure-direct-

projective.

Proof. (1) ⇒ (2) Let M be an object of A. Since A has enough pure-
projective objects by [16, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //N //M //0

with N pure-projective. Since A is pure-semisimple,

0 //K //N //M //0

splits by Lemma 5.6. So M is pure-projective [7, Proposition 4.1].
(2) ⇒ (3) and (3) ⇒ (4) are clear.
(4) ⇒ (3) Since A has enough pure-projective objects by [16, Lemma 6 (ii)],
every object N of A is a pure quotient of a pure-projective object of A.
(3) ⇒ (1) Let M be an object of A. Since A has enough pure-projective objects
by [16, Lemma 6 (ii)], there exists a pure exact sequence

0 //K //N //M //0

with N pure-projective. Since N ⊕M is pure-direct-projective by assumption,
M is pure-projective by Theorem 3.5.

Acknowledgement: The paper appears in the M.Sc. Thesis of the first au-
thor. The authors are grateful to the referee for carefully reading the paper
and for useful suggestions which improved the presentation of the paper.
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