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A NEW MODELLING OF TIMELIKE Q-HELICES

YasIN UNLUTURK*, CUMALI EKicl, AND DoGAN UNAL

Abstract. In this study, we mean that timelike g-helices are curves
whose g-frame fields make a constant angle with a non-zero fixed
axis. We present the necessary and sufficient conditions for timelike
curves via the g-frame to be g-helices in Lorentz-Minkowski 3-space.
Then we find some results of the relations between g-helices and
Darboux g-helices. Furthermore, we portray Darboux g-helices as
special curves whose Darboux vector makes a constant angle with
a non-zero fixed axis by choosing the curve as one of the types of
g-helices, and also the general case.

1. Introduction

There are different approaches to frame a curve such as parallel trans-
port frame, Frenet frame, and etc. in differential geometry of curves
[2, 3, 4, 22]. The way to establish the quasi-frame has been firstly paved
with introducing the quasi normal vector of a space curve by Coquillart
[3]. Then Shin et al. has defined the quasi-normal vector for each point
of the curve which lies in the plane perpendicular to the tangent of the
curve at this point [17]. The local theory of space curves via g-frame
has also been studied by Dede in [4, 19, 20].

Slant helices as a kind of helices have been conceptualized and charac-
terized by some researchers such as Izumiya and Takeuchi [6], Kula and
Yayli [7], Kula et al. [8]. The notion “k-type slant helices” is related to
the class of curves having a property that the scalar product of frame’s
vector field and a fixed axis is constant [5]. For example, general helices
are type-0 helices, and also type-1 slant helix is one whose normal vector
field makes a constant angle with a non zero fixed axis.
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Researches are constantly increasing on k-type slant helices with their
various aspects [10, 11, 14, 15, 18]. For instance, this topic has been
studied and developed in different types of spaces such as Euclidean,
Galilean, and Lorentzian spaces [1, 10, 12, 16]. Another classification
called as “k-type Darboux slant helices” is based on the idea that Dar-
boux vector, obtained by the frame fields in which curves’ behaviour is
taken into consideration, makes a constant angle with a non-zero fixed
axis [10, 14, 15, 21].

In this work, we take timelike g-helices into consideration. By g-
helices, we mean curves due to the quasi-frame (abbv. g-frame) whose
vector fields’ inner product with a non-zero fixed axis is constant. One
by one, all types of these g-helices we study in the work are therefore
classified in three dimensional Lorentz-Minkowski space. Additionally,
we study Darboux g-helices by using Darboux vector obtained with re-
spect to g-frames fields of a timelike curve. For a curve enclosed with
g-frame as a general case, we reach some results for Darboux g-helices.

2. Preliminaries

The three dimensional Lorentz-Minkowski space E is the real vector
space R3 equipped with

g= —dx% + dw% + d:vg,

where (71, T2, 73) is a rectangular coordinate system of E3 [13].

Let v : I — E3 be a timelike space curve with a non-vanishing
second derivative. The Frenet formula for the unit timelike curve ()
is given

T' = kN,
N’ = kT + 7B,
B’ = —7N,

where k, and 7 are the curvature and the torsion functions of the curve
~ which are defined as k = || T’|| and 7 = (N’, B), respectively [9].

The quasi-frame (abbv. g-frame) as an alternative frame to Frenet
trihedron has been introduced as follows: Given a space curve (t),
the g-frame composes of three orthonormal vectors, these vectors are,
respectively, the unit tangent vector T, the quasi-normal N, and the
quasi-binormal vector B,. The g-frame {T,N,, By, k} is given by

_ 7 _ TApk _
T = Ng = qoasag Be = T AL N,
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where k is the projection vector. For clarity, the projection vector k
has been chosen as k = (0,0, 1) along with the paper. Nevertheless, the
g-frame is singular in all cases where t and k become parallel. Hence,
in those cases where t and k are parallel the projection vector k can be
chosen as k = (0, 1,0) or k = (1,0,0) [20].

Let v(s) be a timelike curve that is parameterized by arc-length
s. The variation equations of the g-frame for a timelike curve when
tangent vector (timelike), projection vector k = (0,1,0) (spacelike),
quasi-normal vector (spacelike) and quasi-binormal vector (spacelike),
are given ([20]) by

T 0 k1 ke T
Ni] = kl 0 k3 Nq )
B, ke —ks 0 | | By

where the g-curvatures are

ki = (T, Ng),, ka=(T.Bg),, ks=(N,B,),.

3. The timelike g-helices

In this section, we study different types of g-helices which means k-
type slant helices of curves via quasi frame (abbv. g-frame) in Lorentz-
Minkowski 3-space E}. By g-helices, we intend the curves whose quasi-
frame vector fields’ dot product with a non-zero fixed axis is constant.
These types of helices within the g-frame are enclosed as depending
on the inner product between the tangent vector field T and the fixed
vector field U, the quasi-normal vector field N, and the fixed vector
field U, and the quasi-binormal vector field B, and the fixed vector field
U become constant.

Definition 3.1. A timelike curve v in E3 given by the g-frame
{T,N,,B,} is called a slant helix of type-0, a slant helix of type-1, and
a slant helix of type-2 if there exists a non zero fixed direction U € E3
such that satisfies, respectively,

(T,U);, =co, (Ng,U), =c1, and (By,U); = co,

where cg, c1, and ¢y are constants. The fixed direction U is called axis
of the g-helices.

The vector field U can be written as a combination of g-frame fields
as subsequent

U=M\T + AN, + \3B,,
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where
AL =— <T7U>L Ay = <Nq7U>L A3 = <Bq’U>L'

Since U is a fixed vector filed, its differentiation vanishes, thus the
following system is obtained as

AN +A2k1+Agke = 0,
(3.1) )\/24—)\1]{31 — A3k3 =0,
)\g—i—)\lkz + Aoks = 0.

In the following subsections, we study timelike g-helices based on the
system (3.1).
3.1. The timelike g-helices of type-0

Theorem 3.1. Let v be a timelike curve due to the g-frame in E3.
Then + is a timelike g-helix of type-0 if and only if
(3.2)

(e FHas o) ds) b+ <ef B e T ds) by — 0.

Proof. A timelike g-helix of type-0 satisfies the condition
)\1 = - <TaU>L = Co,

where c¢q is constant. Therefore, by substituting Ay = ¢y into the system
(3.1), it turns into

Aok1 4+ Azks =0,
(3.3) )\,2 — Agkg—cok1 = 0,
)\é 4+ Agks—coko = 0.

From (3.3)1,
(3.4) A==, Ao =—Ns

By using (3.4) in the equations (3.3)2, and (3.3)3, we get the following
linear differential equations of first order:

(3.5) Ay + %MZCOM,
and
(3.6) )\g — %)\32601@.

The solution of (3.5) is

k1k3

k1k
(3.7) Ay = coe_f ’1“23dsfklef Tdsds,
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and the solution of (3.6) is

koks koks

(3.8) A3 = coef k1 dsfkgeff % s,

Substituting (3.7) and (3.8) into (3.3); gives the condition to be q-
helices of type-0 as follows:

(e_f B 0 fkwf Udsds) k1 + <€f T kaS_legdsd«S) ko = 0.

Conversely, suppose that the relation (3.2) holds, the fixed vector
filed U can also be composed of

k1k k1k
U:_%T+Qm<f$wfhaaﬁmqu

+ <coef Fyods fk:ge_filsdsds) B,.

We obtain U’=0 by using (3.2). Hence v is a timelike g-helix of
type-0.
Corollary 3.1. If v is a timelike g-helix of type-0, an axis of v is as

k1k3

k1k
Do = —coT + <c0e‘f % [ el T s | N,

kok kok
+wa%wf@;fa%m93¢

Remark 3.1. If the tangent vector field T of the curve v and the
fixed axis Dg are orthogonal to each other, that is, ¢ = 0, then the
timelike g-helix of type-0 can not occur since the vanishing of the axis
Dy.

3.2. The timelike g-helices of type-1

Theorem 3.2. Let v be a timelike curve due to the g-frame in E3.
Then ~ is a timelike g-helix of type-1 if and only if
(3.10)

kqk k1k ko ks ko ks
<e_ s ] s ds) . <e-f R ds) 0.

Proof. A timelike g-helix of type-1 satisfies the condition
(3.11) A2 = (Ng, U) = ¢y,
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where c; is constant. Therefore, by substituting Ao = ¢; into the system
(3.1), it turns into

N +ei1kr + Agka =0,
(3.12) Atk1 — Asks =0,
)\g—l—)\lkg + c1ks = 0.

From (3.12)3,
(3.13) A3 =AM =B

By using (3.13) in the equations (3.12)1, and (3.12)3, we get the
following linear differential equations of first order:

(3.14) N+ 82 = —cky,
and
(3.15) Ny+5253 \g = —c k3.
The solutions of (3.14), and (3 15) are obtained as
(3.16) A1 = —cre 1k2 fk: e ’“32
and
(3.17) A3 = —cj€ -/ ka f]{igef %dsds,
respectively.

Substituting (3.16) and (3.17) into (3.12)y gives the condition to be
timelike g-helices of type—l as follows:

kq1k kok kok
(e_f T | ka1 o) ds> k1- ( iflsdsfkgef il?jdsd8> k3=0.

Conversely, suppose that the relation (3.10) holds, the fixed vector
field U can also be composed of

f klkz

k1k
U=(—ce “ [ el isgdsds> T+ N,
— <cle_f %13d8fk36f i13d$d5) B,

We obtain U’'= 0 by using (3.10) and (3.11). Hence ~ is a timelike
g-helix of type-1.
Corollary 3.2. If v is a timelike g-helix of type-1, an axis of v is as

k1k k1k
D= <—cle‘fi32d5 [ ke ’1€32dsds> T +¢N,

kok kok
— (cle J o fkig@f iﬁdsds) B,
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Remark 3.2. If the tangent vector field N, of the curve vy and the
fixed axis D are orthogonal to each other, that is, ¢; = 0, then the

timelike g-helix of type-1 can not occur since the vanishing of the axis
D;.

3.3. The timelike g-helices of type-2

Theorem 3.3. Let v be a timelike curve due to the g-frame in E3.
Then + is a timelike g-helix of type-2 if and only if
(3.19)

ki1k k1k k1k k1k
(ef T fk2€_fwd5d5> ko — <€ T fk3€_f = dsd8> ks = 0.

Proof. A timelike g-helix of type-2 satisfies the condition
(3.20) A3 = (Bg, U) = ¢y,

where cs is constant. Therefore, by substituting A3 = co into the system
(3.1), it turns into

N +A2k1 + ko = 0,
(321) )\,2+)\1/€1 — coks =0,
Aks + Aoks = 0.

From (3.21)3,
(3.22) Ao =—12A, A =—FX

By using (3.22) in the equations (3.21);, and (3.21)2, we get the
following linear differential equations of first order:

(3.23) Aﬁ—%)\l = —coka,
and
(3.24) AIQ—%)\Q = 02k3.
The solutions of (3.23) and (3.24) are
(3.25) A = —02€f ki?dsfk:ge*f%dsds,
and
(3.26) Ao = egel B [ hgem IR g,
respectively.

Substituting (3.25) and (3.26) into (3.21); gives the condition to be
g-helices of type-2 as follows:

kik kik L ur
(ef Thy s fk:ge_fi;dsds> ko- <ef Ty ds fk‘ge_fi;dsd8> k3=0.
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Conversely, suppose that the relation (3.19) holds, also the fixed vec-
tor filed U can be composed of

kik kik
U= —CQef ia'zdsfkge_fwdsd(s) T
+ (f s kfd) N, + 2B,

We obtain U’'= 0 by using (3.19) and (3.20). Hence v is a g-helix of
type-2.
Corollary 3.3. If «v is a g-helix of type-2, an axis of 7y is

k1k k1k
Dy = (czef s dsfl@e_fi;dsds> T

ki1k3

k1 ke
+ (czef Ty 08 fk‘ge_f’ydsds> N, + «B,.

Remark 3.3. If the tangent vector field B, of the curve v and the
fixed axis Do are orthogonal to each other, that is, co = 0, then the

timelike g-helix of type-2 can not occur since the vanishing of the axis
Ds.

3.4. The relations of timelike g-helices to each other

In this part, we give the relations of timelike g-helices to each other
based on the consequences of Theorem 3.1, 3.2, and 3.3.

Corollary 3.4. Let v be a timelike q-helix of type-0 in U € E3.
Then ~ is a timelike g-helix of type-1 if and only if

(3.28) kl =0 or k‘g = Cak‘g,

where ¢, is constant.
Proof. Using (3.9) at the condition to be a timelike g-helix of type-1
as follows:

(3.29) (Ng, U), = coe_f%dsszlef T g,

The expression in (3.29) becomes constant if the cases (3.28) are satis-
fied.

Corollary 3.5. Let v be a timelike q-helix of type-0 in U € E3.
Then ~ is a timelike g-helix of type-2 if and only if

(330) ]{72 =0 or /{71 = —Cbk'g,

where ¢ is constant.
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Proof. Using (3.9) at the condition to be a timelike g-helix of type-2
as follows:

kok ko ks
(3.31) (Bg,U), = —coef ifﬁdsfk:ge*f%lsdsds.

The expression in (3.31) becomes constant if the cases (3.30) are satis-
fied.

Corollary 3.6. Let v be a timelike g-helix of type-1 in U € E3.
Then + is a timelike g-helix of type-0 if and only if

(332) k‘l =0 or kig == Cckig,

where ¢, is constant.
Proof. Using (3.18) at the condition to be a timelike g-helix of type-0
as follows:

k1k k1k
(3.33) (T,U), = cleff%dsfklef T s,

The expression in (3.33) becomes constant if the cases (3.32) are satis-
fied.

Corollary 3.7. Let v be a timelike q-helix of type-1 in U € E3.
Then + is a timelike g-helix of type-2 if and only if

(3.34) k‘g =0 or k‘l = Cde,

where ¢4 is constant.
Proof. Using (3.18) at the condition to be a timelike g-helix of type-2
as follows:
koks

kok
(3.35) (Bg,U), = —cle_dekagef g,

The expression in (3.35) becomes constant if the cases (3.34) are satis-
fied.

Corollary 3.8. Let v be a timelike q-helix of type-2 in U € E3.
Then + is a timelike g-helix of type-0 if and only if

(3.36) k‘g =0 or k3 = —Cek‘l,

where ¢, is constant.
Proof. Using (3.27) at the condition to be a timelike g-helix of type-0
as follows:
k1ky

kik
(3.37) (T,U), = cze_f%dsszef ks P

The expression in (3.37) becomes constant if the cases (3.36) are satis-
fied.
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Corollary 3.9. Let v be a timelike q-helix of type-2 in U € E3.
Then ~ is a timelike g-helix of type-1 if and only if

(3.38) kg =0 or k’Q = —kal,

where ¢y is constant.
Proof. Using (3.27) at the condition to be a timelike g-helix of type-1
as follows:

kq ks kik
(3.39) (Ng, U), = czef %;dsfkle_fif;dsds.

The expression in (3.39) becomes constant if the cases (3.38) are satis-
fied.
The above results can be put together with the following corollary:
Corollary 3.10. Let 7 be a curve via q-frame in U € E$. Then

(i): The curve ~ is both a timelike g-helix of type-0 and a timelike
g-helix of type-1 provided that
kl =0 or kg = Akg,

where A is an arbitrary constant.
(ii): The curve v is both a timelike g-helix of type-0 and a timelike
g-helix of type-2 provided that

]{72 =0 or k?l :Bkg,

where B is an arbitrary constant.
iii): The curve ~ is both a timelike g-helix of type-1 and a timelike
Y
g-helix of type-2 provided that

k3:0 or kQZCkl,

where C' is an arbitrary constant.

4. The Darboux qg-helices

In this part of the study, we examine the Darboux g-helices of timelike
curves. First we research the conditions of g-helices of type-0, type-1,
and type-2 to be a Darboux g-helix, respectively. Finally, we obtain the
general case for timelike g-helices to be Darboux helices.

Using the relations

T'=0xT, N;=0xN, B;=0xDB,

The Darboux vector of a timelike curve due to the g-frame is calculated
as

(4.1) 0 = — ksT+koN, — k1 B,
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We have to give the description of Darboux g-helices as follows:

Definition 4.1. A unit speed timelike curve v via g-frame whose
Darboux vector 0 is as given in (4.1), is said to be a Darboux helix
provided that there exists a non-zero fixed direction U €E$ such that
satisfies

(4.2) (0,U)p =,

where c is constant.

Based upon the system (3.1), we take the timelike g-helices of type-
0, type-1, and type-2, and a timelike curve framed by qg-frame to be
Darboux helices into consideration, respectively, in the subsequent four
cases:

Case-1: Let v be a timelike g-helix of type-0. Hence the equation
(3.2) holds. The equation

(4.3) <8/, U)L = /\1]{7:/3 + /\Qké — )\3]{/1 =0.
Using (3.5), and (4.3) in the system (3.1) results

Cok‘é + )\2/{75 — )\3](5/1 =0,
Aok1 + Agko = 0,

5+ — cok1 — Azkz =0,
)\é—F — coka + Aoks = 0.

(4.4)

Applying (4.4)2 into the equations (4.4)s, and (4.4)4, the functions Ao,
and A3 are found as in (3.7), and (3.8). If the values obtained are
substituted into the equation (4.4);, then it follows that
(4.5)

_ [ k2ks

_ [ k1ks 4 k1ks 4 koks 4 d
ks + khe U Sf/ﬁef k2 sds—k'lef Y [ koe” ) T Pds = 0.

Also from (3.9), we have
(4.6)

kok kok ki1k ki1k
(ef ilgdsfkgefifdsds> = —% (ef i23d8fk:1€f iidsds) .
Substituting (4.6) into (4.5) gives

NV kyky o
4.7 K+ (kzg + ’“,251) <e Jo2 el et ds> —0,

which is the condition for a timelike g-helix of type-0 to be a Darboux
helix.

Conversely, suppose that the relation (4.7) holds, it can be seen that
the axis given in (3.9) is a fixed one.
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Case-2: Let v be a timelike g-helix of type-1. Hence the equation
(3.11) holds. Using (3.11), and (4.3) in the system (3.1), we find the
system

/\ﬂfé + Clké — )\3]{?/1 =0,

N +ciki + Aske = 0,

Ak — Aghs = 0,
g—|—>\1k‘2 + c1ks = 0.

(4.8)

Applying (4.8)5 into the equations (4.8)1, and (4.8)3, the functions Ap,
and A3 are found as in (3.16), and (3.17). If the values obtained are
substituted into the equation (4.8);, then it follows that
(4.9)
ki1k kik kok kok
B T NV

Also from (3.23), we obtain
(4.10)

_ [ k2k3 gy koks 4 _ [ Eik2 gy k1ka 4
<e /5 kagef k1 Sds)—’“(e /% kalef ) Cds ) .

= s

Substituting (4.10) into (4.9), we attain the equation

, kb kykg g
(4.11) i + (’“,g’gl - kg,,) <e‘f B [ gyl he ds> — 0,

which is the condition for a g-helix of type-1 to be a Darboux helix.
Conversely, suppose that the relation (4.11) holds, it can be seen that
the axis given in (3.18) is a fixed one.
Case-3: Let v be a timelike g-helix of type-2. So the equation (3.20)
holds. Using (3.20), and (4.3) in the system (3.1), we find the system

/\1]47:/3 + )\2ké - Cgkll = 0,
/\/1+)\2k1 + coko = 0,
/\IQ—i—)\lkl — coks =0,
AMko + Xoks = 0.

(4.12)

Applying (4.12)3 into the equations (4.12);, and (4.12)2, the functions
A1, and Ay are obtained as in (3.25), and (3.26). If the values obtained
is put into the equation (4.12)1, then it follows that

(4.13)

kika 4 _ [ Ekik2 gy kiks 4 _ [ Eiks g
hel T [ hpe ) R B ds kel T [ kg™ TR sk =0,
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Also from (3.34), we obtain
(4.14)
e

k1k k1k k1k
< J i32dsfkgeff 11€32de3> = % <ef iQSdsfkgeff
Put (4.14) into (4.13), we reach the result

/ ok Ry,
(4.15) K+ (5 - k) <ef iy o5 ds) o

k1ks3
k2 dsds) .

which is the condition for a timelike g-helix of type-2 to be a Darboux
helix.

Conversely, suppose that the relation (4.16) holds, it can be seen that
the axis given in (3.27) is a fixed one.

Case 4 (General Case):

Let v be a timelike curve due to the g-frame in E3. From (4.2), we
obtain

(4.16) ks + Xoko — A3k = c.
Differentiating (4.16) gives
4.17 MEh + okl — )\3/6/ =0.
3 2 1
By (4.16) and (4.17), we arrive
_ (kakf—K)k3) Ao —ck}
(4.18) A3 = ?;clng—k’lkzg =
and
(4.19) A = (koki—khk1)Xa—ckf

Kok —kskl
respectively. Substituting (4.18) and (4.19) into (3.1)y delivers the linear
differential equation

) (=K ok K — KGR —hokakl ) \  kak|—ksk)
(4.20) ot ( Ry ki—Fk3k] A2 = CRR TR,

The solution of (4.20) is

(4.21)
—kok1 k) +kokski+kh k24 kb k2 , , —kbk3+kok1 k) —kbk3 —koksk)
Aa=ce kyki—ksky dsf (:‘/11217723:?)€f kiskn —hhi ® ds.
3Rl —R3Ry
Using (4.16) and (4.17), we obtain
(ki ka—k1k) A3 —ck’y
(4.22) A= okl —klk3 ’
and
(4.23) \ (K ks —k1 k%) As—ck
. 2 p—

k:/zkg —ko k’/3 ’
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respectively. Replacing (4.22) and (4.23) into (3.1)3, we have the follow-
ing differential equation

k! k2 —k1kok!,—k! k2+k1k3k, kokl+ksk!,
/ 17 TR1R2Ry — Ry K3 TR1R3 g — 2R TR3Rg

The solution of (4.24) is
(4.25)

f k1k2k57k1k3k/3+k/1k‘gfk‘llk2 , , f kllkgfklkgk/ k/ k2+k1k3k‘ 3 4s
kakl—klk3 f koky—kzks YA k'kg ds

A3 = ce Fookl,— R0k €

From (4.16) and (4.17), we attain

_ (kakl—kik1) M —ck
(4.26) Ay = llcgkf—kgk’l 7
and
(4.27) Ag = (Kyks—kak} )M —ck)

kikh—k[ks

respectively. Usage of the equations (4.26), and (4.27) at (3.1); allows
the equation

/ k3k/l—k/3k1+k/2k3—k2kg _ klk/1+k2kl2
(428) )\1 + ( klké—kikg )\1 = CW.

The solution of (4.28) is
(4.29)
kék%*k‘lk‘llkgszkék3+k‘gk , , klk/ ks— k/ k2+k‘2k ks— k2k‘ 3 gs
ik k3 U [ kakyrkok R, KLk ds
klk/ k/ kQ .

A = ce

Substituting (4.21), (4.25), and (4.29) into (4.17) gives the condition for
a curve to be a Darboux g-helix as follows:

(4.30)
Rkt —kiky ks —koky ks +kyk o1 ks — kg3 +ha b ks — k3 kY
€f klk/ —k{ k2 dsf kik) +k2k2 J k1kh—k] ka2 2ds ds | K
klk:/ k:/k’z 3
_k2k1k1+k2k3kl+k,k2+k/ —klzk%+k2k1k/1—k/2k§—k2k3ké
+ ef kyk1—ksk) Hds IM I khk1—ksk, o) 1
khk1—kak) 2
kikaky—kksky +k k3 -k k3 K k2 — oy ko — k!, k2 4k ks K
J i kk’kk’f — ds
=1le kokg—kjks szk’ ljkg kakf—kik3 ds /1:0
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Conversely, suppose that the relation (4.30) holds, also the fixed vector
filed U can be composed of

(4.31) o o -
U= [ e’ kgkl—klziz:zz:ikﬁm g Ziz,jZ?@ | Fakiks— ilz —l—llz?ll;kg K3k .
+ Cef _k2k1k£—223‘3]j3—]€’%;€]?2k%+k,2k§ dsf% J _kék%+k3§211€ljll__lc}:%€]z§—k2k3ké deS
sk1—Fk3k;
kzk’ k’kzd .

We obtain U'= 0 by using (4.16) and (4.30). Hence ~ is a Darboux
q-helix.
We can give the following theorem containing the cases above as:

Theorem 4.1. Let v be a timelike curve due to the g-frame in
Lorentz-Minkowski 3-space E3. Then

(i) The timelike curve v is a Darboux g-helix satisfying the condition

to be g-helix of type-0 if and only if the equation (4.7) is satisfied,

(ii) The timelike curve v is a Darboux g-helix satisfying the condition

to be g-helix of type-1 if and only if the equation (4.11) is satisfied,

(iii) The timelike curve « is a Darboux g-helix satisfying the condition

to be g-helix of type-2 if and only if the equation (4.15) is satisfied,

(iv) The timelike curve v is a Darboux g-helix if and only if the equa-
tion (4.31) is satisfied, and the fixed axis is given as in (4.31).

5. Conclusion

In the present study, we analyzed timelike g-helices from the point
of view of frame fields which describe the behaviour of the curves. The
original aspect of our research is to deal quasi-frame (abbv. g-frame)
in Lorentz-Minkowski 3-space. For all vector fields of the mentioned
frame, timelike slant helices, which are recalled, in the context of the
paper, as g-helices, have been worked out in Lorentz-Minkowski 3-space.
Additionally, the Darboux g-helices are obtained by Darboux vector
which has been formed by g-frame fields.

N,
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