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Compressed sensing (CS) is a signal processing method 
that is utilized to reconstruct a signal from a small number 
of measurements [1]. CS has been employed to accelerate 
magnetic resonance imaging (MRI) acquisition [2]. Sparsity, 
pseudo-random undersampling, and non-linear iterative 
reconstruction are three essential components in CS.

Sparsity refers to the property in which only a minor 
portion of data hold information. For instance, most pixels 
in magnetic resonance cholangiopancreatography (MRCP) 
have dark signals, and only a few pixels represent the signal 
of the pancreaticobiliary duct. Therefore, MRCP is inherently 
sparse in the image domain. Most MRI images may appear 
complex in the image domain but can exhibit sparsity when 
transformed into an alternative domain [1,3]. Sparsity 
transforms like the wavelet transform identify relatively 
sparse components within images, which can be compressed 
with minimal information loss. This concept of sparsity 
transformation is a fundamental aspect of compressed 
sensing reconstruction.

Pseudo-random sampling is used in CS by increasing 
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the sampling in the center of k-space [3]. In fact, pure 
random sampling is infeasible due to technical issues 
and a low signal-to-noise ratio (SNR) in CS. The pseudo-
random sampling of k-space gives incoherency. Incoherent 
undersampling is employed in CS, leading to the generation 
of noise-like artifacts that become sparse in the wavelet 
domain. This is the main difference from parallel imaging, 
which exhibits a coherent (linear) k-space undersampling 
associated with aliasing artifacts. 

Image Reconstruction with CS

Figure 1 illustrates the concepts and sequences of pseudo-
random sampling, sparsity, and iterative reconstruction in CS.

1) Initially, k-space is measured with incoherent 
undersampling (y).

2) The measured k-space (y) is transformed into an image 
(x) using the Fourier transform. Image (x) has a noise-like 
aliasing artifact.

3) The image is transformed into a sparse domain. The 
image (x) exhibits sparse representation (Ψx) through the 
wavelet (using frequency splitting) transformation. 

4) Inverse transformations are applied after thresholding 
the results in a denoised k-space. The regularization 
factor determines the noise threshold value in the 
sparse representation. Notably, thresholding in sparse 
representations reduces noise.

5) The denoised k-space after some processes is denoted 
as ‘(Ax).’ The data consistency can be verified by comparing 
(Ax) and the initially measured (y). Data consistency 
indicates how closely the denoised data match the initially 
measured data.

6) After checking data consistency, the Fourier transform 
is applied, and the denoised image from the current 
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iteration step is updated. The denoised image of the current 
iteration step is compared with that of the previous step. 

7) If values of the differences from the images are smaller 
than the predefined threshold (ε), the updated image 
becomes the final image. Otherwise, iterative steps from 2) 
to 6) are repeated until the final image 7) is obtained.

Through an iterative reconstruction process, the 
reconstructed image x̂ that satisfies the following equation 
is generated:

x̂ = argminx║Αx-y║2
2 + λ║Ψx║1.

The ║Αx-y║2
2 represents data consistency and the ║Ψx║1 

represents sparsity. The regularization factor (λ) promoting 
sparsity in the transform domain (λ║Ψx║1) determines 
the weighting between data consistency and sparsity [4]. 
Increasing the regularization factor improves the perceived 
SNR of images (Fig. 1A, B), whereas images will be over-

smoothed (Fig. 1C) and have an artificial appearance [4]. 
The identification of the optimal regularization factor is 
essential in CS.

Primary Advantage of CS

The CS technique allows for the use of a higher 
acceleration factor (AF) than conventional parallel imaging 
which typically uses an AF below 4, while maintaining 
image quality [5]. For example, using CS with 20 AF in 
MR acquisition will markedly reduce the scan time (1/20) 
compared to fully sampled images. Thus, the CS technique 
is utilized for rapid imaging while maintaining image 
quality or higher resolution without compromising the scan 
time [1,3,6]. 

Fig. 1. Formula and graphical description of compressed sensing. A-C: Hepatobiliary phase magnetic resonance images of liver 
reconstructed by compressed sensing with different regularization factor (A = 0.0005, B = 0.003, C = 0.02). argmin = arguments of the 
minimum, y = measured k-space data, A = system function including fast Fourier transform (FFT) and coil sensitivity maps, x = target 
image to reconstruct, λ = regularization factor, Ψ = sparse transformation, iFFT = inverse FFT

A B C

Regularization factor = 0.0005 (left), 0.003 (center), and 0.02 (right)
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Clinical Applications of CS MRI: Abdominal 
Examples

MRCP
Applying the CS in MRCP enables a navigator-triggered 

(NT) or single breath-hold (BH) sequence to reduce the 
scan time in pancreatobiliary imaging (Table 1) [7-12]. In a 
few studies [7,10], BH-CS-MRCP demonstrated lower image 
quality, characterized by less accurate visualization of the 
delicate pancreatic duct, than NT-CS-MRCP or conventional 
NT-MRCP. However, recent studies have shown that CS-BH-

MRCP exhibits comparable or better image quality than 
conventional NT-MRCP when using a 3T scanner or a smaller 
field of view [7,9-12].

Both BH- and NT-CS-MRCP have similar high AFs [7-12], 
whereas breath patterns and depth affect the longer scan 
time in NT-CS-MRCP (range, 89–227 s vs. 13–20 s). As BH-
CS-MRCP reduces scan time and motion artifacts [9], it 
is currently widely used as an alternative or additional 
protocol to conventional NT-MRCP. 

Table 1. Clinical application of compressed sensing in the abdomen

Respiratory 
mode 

AF
Scan time, 

s
Conventional 

image*
Advantage Disadvantage

MRCP BH [7-12] 17–28† 13–20 x 17–27 faster Higher visualization of the bile duct 
and pancreatic duct

Better image sharpness owing 
to less motion-related imaging 
blurring

Lower background 
suppression 

Less accurate visualization 
of more delicate pancreatic 
duct structure

Reduced image quality

NT [7-10] 20–22‡ 89–227 x 2–2.7 faster Decreased motion-related artifacts 
owing to shorter acquisition time 
than conventional MRCP

Lower SNR

Liver 
dynamic 
image

BH [13,14] 4.76§ [14], 7 18–19ǁ, 16ǁ NA Higher acquisition rate of optimally 
timed late arterial phase without 
transient motion artifact

Noise-like incoherent 
artifacts 

Synthetic appearance

FB [16,17] 6 11.6–11.8¶ NA Allowing continuous data 
acquisition

Applicable in patients with severe 
transient motion artifacts

Reducing the burden 
of reexamination

Remnant respiratory motion 
artifacts

Static 
(HBP) 
image

BH [18-20] 4.5§ [20], 8, 8.1 9–15 x 1.1–1.6 
faster

Superior liver edge sharpness and 
focal lesion detectability with 
similar scan time 

Reduced scan time with comparable 
overall image quality and 
noninferior diagnostic performance

Nonrespiratory artifacts
Subjective image noise

MRE, 
dynamic 
image

BH [15] 5§ 11.5 x 1.5 faster Higher sensitivity and accuracy for 
active inflammation of Crohn’s 
disease

Decreased motion and aliasing 
artifacts

Synthetic appearance
Streak artifacts

*Scan speed compared to conventional imaging, †Acceleration factors in several studies include 17 (two studies), 20, 24 (two studies), 
and 28, and acquisition times were 13, 16 (two studies), 17 (two studies), and 20 s, ‡Acceleration factors include 20 and 22 (three 
studies), and acquisition times are 134.1 ± 33.5 s (range: 89–204 s), 127.5 ± 36.9 s (range: 91–216 s), and 131.9 ± 33.6 s (range: 
79–221 s), §Compressed sensing + parallel imaging, ǁThe scan time of three arterial phases is 18–19 s, and that of two arterial phases is 
16 s, ¶Temporal resolution is 11.6 and 11.8 s, respectively.
AF = acceleration factor, MRCP = magnetic resonance cholangiopancreatography, BH = breath-hold, NT = navigator-triggered, SNR = 
signal-to-noise ratio, FB = free breathing, NA = not available, HBP = hepatobiliary phase, MRE = magnetic resonance enterography 
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Hepatic Imaging
Dynamic images obtained using the CS technique 

produce high-resolution BH [13-15] or free-breathing 
sequences (Table 1) [16,17]. Multiple arterial phase (AP) 
imaging using the CS technique within a single BH allows 
independent acquisition of k-space data at each AP. The 
BH-CS sequence resulted in a higher success rate for 
optimally timed late AP imaging than for single AP imaging 
[14]. Additionally, CS with multiple AP are more resistant 
to motion artifacts than single AP imaging or view-sharing 
techniques [13,14]. 

Dynamic T1-weighted images produce substantial motion 
artifacts in patients with limited BH capacity. Dynamic 
imaging using motion-state-resolved reconstruction 
(extra-dimensional volumetric interpolated breath-hold 
examination [XD-VIBE]) in a free-breathing manner allows 
continuous data acquisition and is useful for reducing the 
number of re-examinations [16,17]. XD-VIBE extends the CS 
concept by enforcing and exploiting sparsity along dynamic 
and respiration dimensions [16]. 

CS hepatobiliary phase (HBP) imaging exhibits improved 
resolution within a similar scan time [18,19] or comparable 
image quality with a reduced BH time [20] compared 
with conventional imaging (Table 1). A high AF (≥ 8) 
and optimized regularization factor enable a high spatial 
resolution of CS-HBP without increasing scan time, which 
demonstrates hyperintense liver parenchyma, superior liver 
edge sharpness, and superior focal lesion detectability 
[18,19]. However, a high AF may lead to remnant non-
respiratory artifacts with image noise, even after iterations 
[18,19].

CONCLUSION

The application of CS techniques in clinical settings has 
improved the speed of abdominal imaging. By fine-tuning 
the acceleration and regularization factors using the CS 
technique, we can achieve enhanced image quality.
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