DOI QR코드

DOI QR Code

Impact of Additional Preoperative Computed Tomography Imaging on Staging, Surgery, and Postsurgical Survival in Patients With Papillary Thyroid Carcinoma

  • So Yeong Jeong (Department of Radiology, Seoul National University Bundang Hospital, Seoul National University College of Medicine) ;
  • Sae Rom Chung (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jung Hwan Baek (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Young Jun Choi (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sehee Kim (Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Tae-Yon Sung (Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Dong Eun Song (Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Tae Yong Kim (Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jeong Hyun Lee (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • 투고 : 2023.03.17
  • 심사 : 2023.09.10
  • 발행 : 2023.12.01

초록

Objective: We investigated the impacts of computed tomography (CT) added to ultrasound (US) for preoperative evaluation of patients with papillary thyroid carcinoma (PTC) on staging, surgical extent, and postsurgical survival. Materials and Methods: Consecutive patients who underwent surgery for PTC between January 2015 and December 2015 were retrospectively identified. Of them, 584 had undergone preoperative additional thyroid CT imaging (CT + US group), and 859 had not (US group). Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were used to adjust for 14 variables and balance the two groups. Changes in nodal staging and surgical extent caused by CT were recorded. The recurrence-free survival and distant metastasis-free survival after surgery were compared between the two groups. Results: In the CT + US group, discordant nodal staging results between CT and US were observed in 94 of 584 patients (16.1%). Of them, CT accurately diagnosed nodal staging in 54 patients (57.4%), while the US provided incorrect nodal staging. Ten patients (1.7%) had a change in the extent of surgery based on CT findings. Postsurgical recurrence developed in 3.6% (31 of 859) of the CT + US group and 2.9% (17 of 584) of the US group during the median follow-up of 59 months. After adjustment using IPTW (580 vs. 861 patients), the CT + US group showed significantly higher recurrence-free survival rates than the US group (hazard ratio [HR], 0.52 [95% confidence interval {CI}, 0.29-0.96]; P = 0.037). PSM analysis (535 patients in each group) showed similar HR without statistical significance (HR, 0.60 [95% CI, 0.31-1.17]; P = 0.134). For distant metastasis-free survival, HRs after IPTW and PSM were 0.75 (95% CI, 0.17-3.36; P = 0.71) and 0.87 (95% CI, 0.20-3.80; P = 0.851), respectively. Conclusion: The addition of CT imaging for preoperative evaluation changed nodal staging and surgical extent and might improve recurrence-free survival in patients with PTC.

키워드

참고문헌

  1. Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 2001;86:1447-1463
  2. Kim HK, Ha EJ, Han M, Lee J, Soh EY. Reoperations for structurally persistent or recurrent disease after thyroidectomy: analysis via preoperative CT. Sci Rep 2020;10:12376
  3. Brassard M, Borget I, Edet-Sanson A, Giraudet AL, Mundler O, Toubeau M, et al. Long-term follow-up of patients with papillary and follicular thyroid cancer: a prospective study on 715 patients. J Clin Endocrinol Metab 2011;96:1352-1359
  4. Bates MF, Lamas MR, Randle RW, Long KL, Pitt SC, Schneider DF, et al. Back so soon? Is early recurrence of papillary thyroid cancer really just persistent disease? Surgery 2018;163:118-123
  5. Lee JY, Baek JH, Ha EJ, Sung JY, Shin JH, Kim JH, et al. 2020 imaging guidelines for thyroid nodules and differentiated thyroid cancer: Korean Society of Thyroid Radiology. Korean J Radiol 2021;22:840-860
  6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:1-133
  7. Lesnik D, Cunnane ME, Zurakowski D, Acar GO, Ecevit C, Mace A, et al. Papillary thyroid carcinoma nodal surgery directed by a preoperative radiographic map utilizing CT scan and ultrasound in all primary and reoperative patients. Head Neck 2014;36:191-202
  8. Choi JS, Kim J, Kwak JY, Kim MJ, Chang HS, Kim EK. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol 2009;193:871-878
  9. Lee Y, Kim JH, Baek JH, Jung SL, Park SW, Kim J, et al. Value of CT added to ultrasonography for the diagnosis of lymph node metastasis in patients with thyroid cancer. Head Neck 2018;40:2137-2148
  10. Bongers PJ, Verzijl R, Dzingala M, Vriens MR, Yu E, Pasternak JD, et al. Preoperative computed tomography changes surgical management for clinically low-risk well-differentiated thyroid cancer. Ann Surg Oncol 2019;26:4439-4444
  11. Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid 2015;25:3-14
  12. Biermann M, Brauckhoff K. Most "Recurrences" of thyroid cancer represent persistent rather than recurrent disease. Clinical Thyroidology 2018;30:108-111
  13. Ahn JE, Lee JH, Yi JS, Shong YK, Hong SJ, Lee DH, et al. Diagnostic accuracy of CT and ultrasonography for evaluating metastatic cervical lymph nodes in patients with thyroid cancer. World J Surg 2008;32:1552-1558
  14. Park JE, Lee JH, Ryu KH, Park HS, Chung MS, Kim HW, et al. Improved diagnostic accuracy using arterial phase CT for lateral cervical lymph node metastasis from papillary thyroid cancer. AJNR Am J Neuroradiol 2017;38:782-788
  15. Lee DW, Ji YB, Sung ES, Park JS, Lee YJ, Park DW, et al. Roles of ultrasonography and computed tomography in the surgical management of cervical lymph node metastases in papillary thyroid carcinoma. Eur J Surg Oncol 2013;39:191-196
  16. Suh CH, Baek JH, Choi YJ, Lee JH. Performance of CT in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid cancer: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2017;38:154-161
  17. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010;256:32-61
  18. Heinze G, Juni P. An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J 2011;32:1704-1708
  19. Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021 Korean Thyroid Imaging Reporting and Data System and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2021;22:2094-2123