DOI QR코드

DOI QR Code

Isolation and Antimicrobial Susceptibility of Nontuberculous Mycobacteria in a Tertiary Hospital in Korea, 2016 to 2020

  • Keun Ju Kim (Department of Laboratory Medicine, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Seung-Hwan Oh (Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital) ;
  • Doosoo Jeon (Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicin) ;
  • Chulhun L. Chang (Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital)
  • Received : 2022.08.16
  • Accepted : 2022.12.08
  • Published : 2023.01.31

Abstract

Background: There is a global increase in isolation of nontuberculous mycobacteria (NTM). The aim of the study was to analyze longitudinal trends of NTM identification and pattern of antimicrobial susceptibility testing. Methods: NTM recovery rates, distribution of NTM species identification, and antimicrobial susceptibility pattern of NTM at Pusan National University Yangsan Hospital between January 2016 and December 2020 were retrospectively analyzed. Results: A total of 52,456 specimens from 21,264 patients were submitted for mycobacterial culture, of which 2,521 from 1,410 patients were NTM positive over five years (January 2016 to December 2020). NTM isolation showed an increasing trend from 2016 to 2020 (p<0.001, test for trend) mainly caused by Mycobacterium avium complex. The vast majority of M. avium complex were susceptible to key agents clarithromycin and amikacin. For Mycobacterium kansasii, resistance to rifampin and clarithromycin is rare. Amikacin was the most effective drug against Mycobacterium abscessus subspecies abscessus and Mycobacterium subspecies massiliense. Most of M. subspecies massiliense were susceptible to clarithromycin, while the majority of M. abscessus subspecies abscessus were resistant to clarithromycin (p<0.001). Conclusion: There was an increasing trend of NTM isolation in our hospital. Resistance to key drugs was uncommon for most NTM species except for M. abscessus subspecies abscessus against clarithromycin.

Keywords

References

  1. Jeon D. Infection source and epidemiology of nontuberculous mycobacterial lung disease. Tuberc Respir Dis (Seoul) 2019;82:94-101. https://doi.org/10.4046/trd.2018.0026
  2. Kim HS, Lee Y, Lee S, Kim YA, Sun YK. Recent trends in clinically significant nontuberculous Mycobacteria isolates at a Korean general hospital. Ann Lab Med 2014;34:56-9. https://doi.org/10.3343/alm.2014.34.1.56
  3. Kim N, Yi J, Chang CL. Recovery rates of non-tuberculous mycobacteria from clinical specimens are increasing in Korean tertiary-care hospitals. J Korean Med Sci 2017;32:1263-7. https://doi.org/10.3346/jkms.2017.32.8.1263
  4. Cowman S, Burns K, Benson S, Wilson R, Loebinger MR. The antimicrobial susceptibility of non-tuberculous mycobacteria. J Infect 2016;72:324-31. https://doi.org/10.1016/j.jinf.2015.12.007
  5. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 2012;185:881-6. https://doi.org/10.1164/rccm.201111-2016OC
  6. Martin-Casabona N, Bahrmand AR, Bennedsen J, Thomsen VO, Curcio M, Fauville-Dufaux M, et al. Non-tuberculous mycobacteria: patterns of isolation: a multi-country retrospective survey. Int J Tuberc Lung Dis 2004;8:1186-93.
  7. Shah NM, Davidson JA, Anderson LF, Lalor MK, Kim J, Thomas HL, et al. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007-2012. BMC Infect Dis 2016;16:195.
  8. Johansen MD, Herrmann JL, Kremer L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat Rev Microbiol 2020;18:392-407. https://doi.org/10.1038/s41579-020-0331-1
  9. Saxena S, Spaink HP, Forn-Cuni G. Drug resistance in nontuberculous mycobacteria: mechanisms and models. Biology (Basel) 2021;10:96.
  10. Sim YS, Park HY, Jeon K, Suh GY, Kwon OJ, Koh WJ. Standardized combination antibiotic treatment of Mycobacterium avium complex lung disease. Yonsei Med J 2010;51:888-94. https://doi.org/10.3349/ymj.2010.51.6.888
  11. Wallace RJ, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother 2014;69:1945-53. https://doi.org/10.1093/jac/dku062
  12. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007;175:367-416. https://doi.org/10.1164/rccm.200604-571ST
  13. Mirsaeidi M, Farshidpour M, Allen MB, Ebrahimi G, Falkinham JO. Highlight on advances in nontuberculous mycobacterial disease in North America. Biomed Res Int 2014;2014:919474.
  14. van Ingen J, Boeree MJ, van Soolingen D, Mouton JW. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012;15:149-61. https://doi.org/10.1016/j.drup.2012.04.001
  15. Research Committee of the British Thoracic Society. First randomised trial of treatments for pulmonary disease caused by M avium intracellulare, M malmoense, and M xenopi in HIV negative patients: rifampicin, ethambutol and isoniazid versus rifampicin and ethambutol. Thorax 2001;56:167-72. https://doi.org/10.1136/thorax.56.3.167
  16. Woods GL. Performance standards for susceptibility testing of mycobacteria, Nocardia spp., and other aerobic actinomycetes: CLSI supplement M62. 1st ed. Wayne: Clinical and Laboratory Standards Institute; 2018.
  17. Griffith DE, Aksamit TR. Managing Mycobacterium avium complex lung disease with a little help from my friend. Chest 2021;159:1372-81. https://doi.org/10.1016/j.chest.2020.10.031
  18. Kwon BS, Kim MN, Sung H, Koh Y, Kim WS, Song JW, et al. In vitro MIC values of rifampin and ethambutol and treatment outcome in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother 2018;62:e00491-18.
  19. Moon SM, Kim SY, Kim DH, Huh HJ, Lee NY, Jhun BW. Relationship between resistance to ethambutol and rifampin and clinical outcomes in Mycobacterium avium complex pulmonary disease. Antimicrob Agents Chemother 2022;66:e0202721.
  20. Woods GL. Susceptibility testing of mycobacteria, Nocardia spp., and other aerobic actinomycetes: CLSI standard M24. 3rd ed. Wayne: Clinical and Laboratory Standards Institute; 2018.
  21. Park Y, Park YE, Jhun BW, Park J, Kwak N, Jo KW, et al. Impact of susceptibility to injectable antibiotics on the treatment outcomes of Mycobacterium abscessus pulmonary disease. Open Forum Infect Dis 2021;8:ofab215.
  22. Basille D, Jounieaux V, Andrejak C. Treatment of other nontuberculous mycobacteria. Semin Respir Crit Care Med 2018;39:377-82. https://doi.org/10.1055/s-0038-1660473
  23. Global Laboratory Initiative. Mycobacteriology laboratory manual. 1st ed. Geneva: Global Laboratory Initiative; 2014.
  24. Kim SH, Shin JH. Identification of nontuberculous mycobacteria from clinical isolates and specimens using AdvanSure Mycobacteria GenoBlot assay. Jpn J Infect Dis 2020;73:278-81. https://doi.org/10.7883/yoken.JJID.2019.111
  25. Petti CA, Brandt ME, Church DL, Emler S, Simmon K, Zelazny AM. Interpretive criteria for identification of bacteria and fungi by targeted DNA sequencing: CLSI guideline MM18. 2nd ed. Wayne: Clinical and Laboratory Standards Institute; 2018.
  26. Yoo JW, Jo KW, Kim MN, Lee SD, Kim WS, Kim DS, et al. Increasing trend of isolation of non-tuberculous mycobacteria in a tertiary university hospital in South Korea. Tuberc Respir Dis (Seoul) 2012;72:409-15. https://doi.org/10.4046/trd.2012.72.5.409
  27. Park Y, Kwak SH, Yong SH, Lee SH, Leem AY, Kim SY, et al. The association between behavioral risk factors and nontuberculous mycobacterial pulmonary disease. Yonsei Med J 2021;62:702-7. https://doi.org/10.3349/ymj.2021.62.8.702
  28. Roberts L. How COVID is derailing the fight against HIV, TB and malaria. Nature 2021;597:314.
  29. Amar S, Avni YS, O'Rourke N, Michael T. Prevalence of common infectious diseases after COVID-19 vaccination and easing of pandemic restrictions in Israel. JAMA Netw Open 2022;5:e2146175.
  30. Park YS, Lee CH, Lee SM, Yang SC, Yoo CG, Kim YW, et al. Rapid increase of non-tuberculous mycobacterial lung diseases at a tertiary referral hospital in South Korea. Int J Tuberc Lung Dis 2010;14:1069-71.
  31. Spaulding AB, Lai YL, Zelazny AM, Olivier KN, Kadri SS, Prevots DR, et al. Geographic distribution of nontuberculous mycobacterial species identified among clinical isolates in the United States, 2009-2013. Ann Am Thorac Soc 2017;14:1655-61. https://doi.org/10.1513/AnnalsATS.201611-860OC
  32. Lim AY, Chotirmall SH, Fok ET, Verma A, De PP, Goh SK, et al. Profiling non-tuberculous mycobacteria in an Asian setting: characteristics and clinical outcomes of hospitalized patients in Singapore. BMC Pulm Med 2018;18:85.
  33. Wu J, Zhang Y, Li J, Lin S, Wang L, Jiang Y, et al. Increase in nontuberculous mycobacteria isolated in Shanghai, China: results from a population-based study. PLoS One 2014;9:e109736.
  34. Honda JR, Virdi R, Chan ED. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front Microbiol 2018;9: 2029.
  35. Zhang H, Luo M, Zhang K, Yang X, Hu K, Fu Z, et al. Species identification and antimicrobial susceptibility testing of non-tuberculous mycobacteria isolated in Chongqing, Southwest China. Epidemiol Infect 2020;149:e7.
  36. Zhang ZX, Cherng BP, Sng LH, Tan YE. Clinical and microbiological characteristics of non-tuberculous mycobacteria diseases in Singapore with a focus on pulmonary disease, 2012-2016. BMC Infect Dis 2019;19:436.
  37. Khieu V, Ananta P, Kaewprasert O, Laohaviroj M, Namwat W, Faksri K. Whole-genome sequencing analysis to identify infection with multiple species of nontuberculous mycobacteria. Pathogens 2021;10:879.
  38. Woodley CL, Kilburn JO, David HL, Silcox VA. Susceptibility of mycobacteria to rifampin. Antimicrob Agents Chemother 1972;2:245-9. https://doi.org/10.1128/AAC.2.4.245
  39. Rosenzweig DY. Pulmonary mycobacterial infections due to Mycobacterium intracellulare-avium complex: clinical features and course in 100 consecutive cases. Chest 1979;75:115-9. https://doi.org/10.1378/chest.75.2.115
  40. Etzkorn ET, Aldarondo S, McAllister CK, Matthews J, Ognibene AJ. Medical therapy of Mycobacterium avium-intracellulare pulmonary disease. Am Rev Respir Dis 1986;134:442-5.
  41. Wallace RJ, Dunbar D, Brown BA, Onyi G, Dunlap R, Ahn CH, et al. Rifampin-resistant Mycobacterium kansasii. Clin Infect Dis 1994;18:736-43. https://doi.org/10.1093/clinids/18.5.736
  42. Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006;174:928-34. https://doi.org/10.1164/rccm.200603-450OC
  43. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, et al. In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol 2013; 51:3389-94. https://doi.org/10.1128/JCM.01612-13
  44. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med 2009;180:896-902. https://doi.org/10.1164/rccm.200905-0704OC
  45. Koh WJ, Hong G, Kim SY, Jeong BH, Park HY, Jeon K, et al. Treatment of refractory Mycobacterium avium complex lung disease with a moxifloxacin-containing regimen. Antimicrob Agents Chemother 2013;57:2281-5. https://doi.org/10.1128/AAC.02281-12
  46. Brown-Elliott BA, Woods GL. Antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol 2019;57:e00834-19.
  47. Jaffre J, Aubry A, Maitre T, Morel F, Brossier F, Robert J, et al. Rational choice of antibiotics and media for Mycobacterium avium complex drug susceptibility testing. Front Microbiol 2020;11:81.
  48. Huang WC, Yu MC, Huang YW. Identification and drug susceptibility testing for nontuberculous mycobacteria. J Formos Med Assoc 2020;119 Suppl 1:S32-41. https://doi.org/10.1016/j.jfma.2020.05.002
  49. Liu CF, Song YM, He WC, Liu DX, He P, Bao JJ, et al. Nontuberculous mycobacteria in China: incidence and antimicrobial resistance spectrum from a nationwide survey. Infect Dis Poverty 2021;10:59.
  50. Cho EH, Huh HJ, Song DJ, Moon SM, Lee SH, Shin SY, et al. Differences in drug susceptibility pattern between Mycobacterium avium and Mycobacterium intracellulare isolated in respiratory specimens. J Infect Chemother 2018;24:315-8. https://doi.org/10.1016/j.jiac.2017.10.022
  51. Moon SM, Choe J, Jhun BW, Jeon K, Kwon OJ, Huh HJ, et al. Treatment with a macrolide-containing regimen for Mycobacterium kansasii pulmonary disease. Respir Med 2019;148:37-42. https://doi.org/10.1016/j.rmed.2019.01.012
  52. da Silva Telles MA, Chimara E, Ferrazoli L, Riley LW. Mycobacterium kansasii: antibiotic susceptibility and PCR-restriction analysis of clinical isolates. J Med Microbiol 2005;54(Pt 10):975-9. https://doi.org/10.1099/jmm.0.45965-0
  53. Cho EH, Huh HJ, Song DJ, Lee SH, Kim CK, Shin SY, et al. Drug susceptibility patterns of Mycobacterium abscessus and Mycobacterium massiliense isolated from respiratory specimens. Diagn Microbiol Infect Dis 2019;93:107-11. https://doi.org/10.1016/j.diagmicrobio.2018.08.008
  54. Nash KA, Brown-Elliott BA, Wallace RJ. A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 2009;53:1367-76. https://doi.org/10.1128/AAC.01275-08