DOI QR코드

DOI QR Code

New Targeted Therapy for Non-Small Cell Lung Cancer

  • Eun Ki Chung (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Seung Hyun Yong (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Eun Hye Lee (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Eun Young Kim (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Yoon Soo Chang (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine) ;
  • Sang Hoon Lee (Division of Pulmonary, Department of Internal Medicine, Yonsei University College of Medicine)
  • Received : 2022.05.02
  • Accepted : 2022.10.03
  • Published : 2023.01.31

Abstract

Lung cancer ranks first in cancer mortality in Korea and cancer incidence in Korean men. More than half of Korean lung cancer patients undergo chemotherapy, including adjuvant therapy. Cytotoxic agents, targeted therapy, and immune checkpoint inhibitors are used in chemotherapy according to the biopsy and genetic test results. Among chemotherapy, the one that has developed rapidly is targeted therapy. The National Comprehensive Cancer Network (NCCN) guidelines have been updated recently for targeted therapy of multiple gene mutations, and targeted therapy is used not only for chemotherapy but also for adjuvant therapy. While previously targeted therapies have been developed for common genetic mutations, recently targeted therapies have been developed to overcome uncommon mutations or drug resistance that have occurred since previous targeted therapy. Therefore, this study describes recent, rapidly developing targeted therapies.

Keywords

Acknowledgement

This study was supported by a Severance Hospital Research fund for Clinical excellence (SHRC) (C-4-2022-0268).

References

  1. Jung KW, Won YJ, Hong S, Kong HJ, Im JS, Seo HG. Prediction of cancer incidence and mortality in Korea, 2021. Cancer Res Treat 2021;53:316-22. https://doi.org/10.4143/crt.2021.290
  2. Kim HJ, Choi CM, Kim SG. The younger patients have more better prognosis in limited disease small cell lung cancer. Tuberc Respir Dis (Seoul) 2016;79:274-81. https://doi.org/10.4046/trd.2016.79.4.274
  3. Park CK, Kim SJ. Trends and updated statistics of lung cancer in Korea. Tuberc Respir Dis (Seoul) 2019;82:175-7. https://doi.org/10.4046/trd.2019.0015
  4. Kim HC, Jung CY, Cho DG, Jeon JH, Lee JE, Ahn JS, et al. Clinical characteristics and prognostic factors of lung cancer in Korea: a pilot study of data from the Korean nationwide lung cancer registry. Tuberc Respir Dis (Seoul) 2019;82:118-25. https://doi.org/10.4046/trd.2017.0128
  5. Lee JG, Kim HC, Choi CM. Recent trends of lung cancer in Korea. Tuberc Respir Dis (Seoul) 2021;84:89-95. https://doi.org/10.4046/trd.2020.0134
  6. Kim HC, Choi CM. Current status of immunotherapy for lung cancer and future perspectives. Tuberc Respir Dis (Seoul) 2020;83:14-9. https://doi.org/10.4046/trd.2019.0039
  7. National Comprehensive Cancer Network. Non-small cell lung cancer: version 2.2021 [Internet]. Plymouth Meeting: National Comprehensive Cancer Network; 2022 [cited 2022 Nov 27]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf.
  8. Hong Y, Kim WJ, Bang CY, Lee JC, Oh YM. Identification of alternative splicing and fusion transcripts in non-small cell lung cancer by RNA sequencing. Tuberc Respir Dis (Seoul) 2016;79:85-90. https://doi.org/10.4046/trd.2016.79.2.85
  9. Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res 2015;4:156-64.
  10. Kim EY, Kim A, Lee G, Lee H, Chang YS. Different mutational characteristics of the subsets of EGFR-tyrosine kinase inhibitor sensitizing mutation-positive lung adenocarcinoma. BMC Cancer 2018;18:1221.
  11. Kim SY, Myung JK, Kim HR, Na II, Koh JS, Baek HJ, et al. Factors that predict clinical benefit of EGFR TKI therapy in patients with EGFR wild-type lung adenocarcinoma. Tuberc Respir Dis (Seoul) 2019;82:62-70. https://doi.org/10.4046/trd.2018.0004
  12. Park JY, Jang SH. Epidemiology of lung cancer in Korea: recent trends. Tuberc Respir Dis (Seoul) 2016;79:58-69. https://doi.org/10.4046/trd.2016.79.2.58
  13. Li K, Yang M, Liang N, Li S. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: perplexity and solution (review). Oncol Rep 2017;37:1347-58. https://doi.org/10.3892/or.2017.5409
  14. Chang YS, Choi CM, Lee JC. Mechanisms of epidermal growth factor receptor tyrosine kinase inhibitor resistance and strategies to overcome resistance in lung adenocarcinoma. Tuberc Respir Dis (Seoul) 2016;79:248-56. https://doi.org/10.4046/trd.2016.79.4.248
  15. Lau SC, Chooback N, Ho C, Melosky B. Outcome differences between first- and second-generation EGFR inhibitors in advanced EGFR mutated NSCLC in a large population-based cohort. Clin Lung Cancer 2019;20:e576-e583. https://doi.org/10.1016/j.cllc.2019.05.003
  16. Wu SG, Liu YN, Tsai MF, Chang YL, Yu CJ, Yang PC, et al. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 2016;7:12404-13. https://doi.org/10.18632/oncotarget.7189
  17. Kwon BS, Park JH, Kim WS, Song JS, Choi CM, Rho JK, et al. Predictive factors for switched EGFR-TKI retreatment in patients with EGFR-mutant non-small cell lung cancer. Tuberc Respir Dis (Seoul) 2017;80:187-93. https://doi.org/10.4046/trd.2017.80.2.187
  18. Park JY, Jang SH, Lee CY, Kim T, Chung SJ, Lee YJ, et al. Pretreatment neutrophil-to-lymphocyte ratio and smoking history as prognostic factors in advanced non-small cell lung cancer patients treated with osimertinib. Tuberc Respir Dis (Seoul) 2022;85:155-64. https://doi.org/10.4046/trd.2021.0139
  19. Kim MS, Kim SH, Yang SH, Kim MS. Afatinib mediates autophagic degradation of ORAI1, STIM1, and SERCA2, which inhibits proliferation of non-small cell lung cancer cells. Tuberc Respir Dis (Seoul) 2022;85:147-54. https://doi.org/10.4046/trd.2021.0095
  20. Park K, Tan EH, O'Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomized controlled trial. Lancet Oncol 2016;17:577-89. https://doi.org/10.1016/S1470-2045(16)30033-X
  21. Su PL, Wu YL, Chang WY, Ho CL, Tseng YL, Lai WW, et al. Preventing and treating brain metastases with three firstline EGFR-tyrosine kinase inhibitors in patients with EGFR mutation-positive advanced non-small cell lung cancer. Ther Adv Med Oncol 2018;10:1758835918797589.
  22. Harvey RD, Adams VR, Beardslee T, Medina P. Afatinib for the treatment of EGFR mutation-positive NSCLC: a review of clinical findings. J Oncol Pharm Pract 2020;26:1461-74. https://doi.org/10.1177/1078155220931926
  23. Watanabe S, Minegishi Y, Yoshizawa H, Maemondo M, Inoue A, Sugawara S, et al. Effectiveness of gefitinib against non-small-cell lung cancer with the uncommon EGFR mutations G719X and L861Q. J Thorac Oncol 2014;9:189-94. https://doi.org/10.1097/JTO.0000000000000048
  24. Chen D, Song Z, Cheng G. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations. Onco Targets Ther 2016;9:4181-6. https://doi.org/10.2147/OTT.S108242
  25. Yang JC, Sequist LV, Geater SL, Tsai CM, Mok TS, Schuler M, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol 2015;16:830-8. https://doi.org/10.1016/S1470-2045(15)00026-1
  26. Zhang T, Wan B, Zhao Y, Li C, Liu H, Lv T, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: new evidence and treatment. Transl Lung Cancer Res 2019;8:302-16. https://doi.org/10.21037/tlcr.2019.04.12
  27. Wu YL, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol 2017;18:1454-66. https://doi.org/10.1016/S1470-2045(17)30608-3
  28. Mok TS, Cheng Y, Zhou X, Lee KH, Nakagawa K, Niho S, et al. Improvement in overall survival in a randomized study that compared dacomitinib with gefitinib in patients with advanced non-small-cell lung cancer and EGFR-activating mutations. J Clin Oncol 2018;36:2244-50. https://doi.org/10.1200/JCO.2018.78.7994
  29. Zhang J, Wang Y, Liu Z, Wang L, Yao Y, Liu Y, et al. Efficacy of dacomitinib in patients with EGFR-mutated NSCLC and brain metastases. Thorac Cancer 2021;12:3407-15. https://doi.org/10.1111/1759-7714.14222
  30. Lee SH, Kim EY, Kim A, Chang YS. Clinical implication and usefulness of de novo EGFR T790M mutation in lung adenocarcinoma with EGFR-tyrosine kinase inhibitor sensitizing mutation. Cancer Biol Ther 2020;21:741-8. https://doi.org/10.1080/15384047.2020.1776579
  31. Goag EK, Lee JM, Chung KS, Kim SY, Leem AY, Song JH, et al. Usefulness of bronchoscopic rebiopsy of non-small cell lung cancer with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor. J Cancer 2018;9:1113-20. https://doi.org/10.7150/jca.21650
  32. Cho JH, Lim SH, An HJ, Kim KH, Park KU, Kang EJ, et al. Osimertinib for patients with non-small-cell lung cancer harboring uncommon EGFR mutations: a multicenter, open-label, phase II trial (KCSG-LU15-09). J Clin Oncol 2020;38:488-95. https://doi.org/10.1200/JCO.19.00931
  33. Ministry of Food and Drug Safety Republic of Korea. Leclaza (lazertinib): Republic of Korea prescribing information [Internet]. Cheongju: Ministry of Food and Drug Safety Republic of Korea; 2022 [cited 2022 Nov 27]. Available from: https://nedrug.mfds.go.kr/pbp/CCBBB01/getItemDetail?itemSeq=202100467.
  34. Yun J, Hong MH, Kim SY, Park CW, Kim S, Yun MR, et al. YH25448, an irreversible EGFR-TKI with potent intracranial activity in EGFR mutant non-small cell lung cancer. Clin Cancer Res 2019;25:2575-87. https://doi.org/10.1158/1078-0432.CCR-18-2906
  35. Hwang KE, Kim HR. Response evaluation of chemotherapy for lung cancer. Tuberc Respir Dis (Seoul) 2017;80:136-42. https://doi.org/10.4046/trd.2017.80.2.136
  36. Cho BC, Han JY, Kim SW, Lee KH, Cho EK, Lee YG, et al. A phase 1/2 study of Lazertinib 240 mg in patients with advanced EGFR T790M-positive NSCLC after previous EGFR tyrosine kinase inhibitors. J Thorac Oncol 2022;17:558-67. https://doi.org/10.1016/j.jtho.2021.11.025
  37. Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer 2019;121:725-37. https://doi.org/10.1038/s41416-019-0573-8
  38. Jang SB, Kim KB, Sim S, Cho BC, Ahn MJ, Han JY, et al. Cardiac safety assessment of lazertinib: findings from patients with EGFR mutation-positive advanced NSCLC and preclinical studies. JTO Clin Res Rep 2021;2:100224.
  39. Yang JC, Ahn MJ, Kim DW, Ramalingam SS, Sequist LV, Su WC, et al. Osimertinib in pretreated T790M-positive advanced non-small-cell lung cancer: AURA study phase II extension component. J Clin Oncol 2017;35:1288-96. https://doi.org/10.1200/JCO.2016.70.3223
  40. Shreeve SM, Martinez M, Verheijen RB, Xie J, Sun T, Haddish-Berhane N, et al. MARIPOSA: randomized phase 3 study of first-line amivantamab + lazertinib vs osimertinib vs lazertinib in EGFR-mutant NSCLC. J Thorac Oncol 2021;16:S620-1. https://doi.org/10.1016/j.jtho.2021.01.1130
  41. Remon J, Hendriks LE, Cardona AF, Besse B. EGFR exon 20 insertions in advanced non-small cell lung cancer: a new history begins. Cancer Treat Rev 2020;90:102105.
  42. Arcila ME, Nafa K, Chaft JE, Rekhtman N, Lau C, Reva BA, et al. EGFR exon 20 insertion mutations in lung adenocarcinomas: prevalence, molecular heterogeneity, and clinicopathologic characteristics. Mol Cancer Ther 2013;12:220-9. https://doi.org/10.1158/1535-7163.MCT-12-0620
  43. Vyse S, Huang PH. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther 2019;4:5.
  44. Yasuda H, Park E, Yun CH, Sng NJ, Lucena-Araujo AR, Yeo WL, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci Transl Med 2013;5:216ra177.
  45. Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K, et al. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget 2015;6:38789-803. https://doi.org/10.18632/oncotarget.5887
  46. O'Kane GM, Bradbury PA, Feld R, Leighl NB, Liu G, Pisters KM, et al. Uncommon EGFR mutations in advanced non-small cell lung cancer. Lung Cancer 2017;109:137-44. https://doi.org/10.1016/j.lungcan.2017.04.016
  47. Park K, John T, Kim SW, Lee JS, Shu CA, Kim DW, et al. Amivantamab (JNJ-61186372), an anti-EGFR-MET bispecific antibody, in patients with EGFR exon 20 insertion (exon20ins)-mutated non-small cell lung cancer (NSCLC). J Clin Oncol 2020;38(15 Suppl):9512.
  48. Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol 2021;39:3391-402. https://doi.org/10.1200/JCO.21.00662
  49. Ramalingam SS, Cheng Y, Zhou C, Ohe Y, Imamura F, Cho BC, et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase iii flaura study. Ann Oncol 2018;29(Suppl 8):VIII740.
  50. Papadimitrakopoulou VA, Wu YL, Han JY, Ahn MJ, Ramalingam SS, John T, et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study. Ann Oncol 2018;29(Suppl 8):VIII741.
  51. Gonzalvez F, Vincent S, Baker TE, Gould AE, Li S, Wardwell SD, et al. Mobocertinib (TAK-788): a targeted inhibitor of EGFR exon 20 insertion mutants in non-small cell lung cancer. Cancer Discov 2021;11:1672-87. https://doi.org/10.1158/2159-8290.CD-20-1683
  52. Zhou C, Ramalingam SS, Kim TM, Kim SW, Yang JC, Riely GJ, et al. Treatment outcomes and safety of mobocertinib in platinum-pretreated patients with EGFR exon 20 insertion-positive metastatic non-small cell lung cancer: a phase 1/2 open-label nonrandomized clinical trial. JAMA Oncol 2021;7:e214761.
  53. Golding B, Luu A, Jones R, Viloria-Petit AM. The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Mol Cancer 2018;17:52.
  54. Syed YY. Lorlatinib: first global approval. Drugs 2019;79:93-8. https://doi.org/10.1007/s40265-018-1041-0
  55. Shaw AT, Solomon BJ, Chiari R, Riely GJ, Besse B, Soo RA, et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: a multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol 2019;20:1691-701. https://doi.org/10.1016/S1470-2045(19)30655-2
  56. Solomon BJ, Besse B, Bauer TM, Felip E, Soo RA, Camidge DR, et al. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: results from a global phase 2 study. Lancet Oncol 2018;19:1654-67. https://doi.org/10.1016/S1470-2045(18)30649-1
  57. Felip E, Shaw AT, Bearz A, Camidge DR, Solomon BJ, Bauman JR, et al. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann Oncol 2021;32:620-30. https://doi.org/10.1016/j.annonc.2021.02.012
  58. Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-line lorlatinib or crizotinib in advanced ALK-positive lung cancer. N Engl J Med 2020;383:2018-29. https://doi.org/10.1056/NEJMoa2027187
  59. Duruisseaux M. Lorlatinib: a new treatment option for ROS1-positive lung cancer. Lancet Oncol 2019;20:1622-3. https://doi.org/10.1016/S1470-2045(19)30716-8
  60. Camidge DR. Lorlatinib should not be considered as the preferred first-line option in patients with advanced ALK rearranged NSCLC. J Thorac Oncol 2021;16:528-31. https://doi.org/10.1016/j.jtho.2020.12.022
  61. Liu SY, Sun H, Zhou JY, Jie GL, Xie Z, Shao Y, et al. Clinical characteristics and prognostic value of the KRAS G12C mutation in Chinese non-small cell lung cancer patients. Biomark Res 2020;8:22.
  62. Skoulidis F, Li BT, Dy GK, Price TJ, Falchook GS, Wolf J, et al. Sotorasib for lung cancers with KRAS p.G12C mutation. N Engl J Med 2021;384:2371-81. https://doi.org/10.1056/NEJMoa2103695
  63. Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci 2008;99:2280-5. https://doi.org/10.1111/j.1349-7006.2008.00916.x
  64. Schrock AB, Frampton GM, Suh J, Chalmers ZR, Rosenzweig M, Erlich RL, et al. Characterization of 298 patients with lung cancer harboring MET exon 14 skipping alterations. J Thorac Oncol 2016;11:1493-502. https://doi.org/10.1016/j.jtho.2016.06.004
  65. Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015;5:850-9. https://doi.org/10.1158/2159-8290.CD-15-0285
  66. Awad MM, Oxnard GR, Jackman DM, Savukoski DO, Hall D, Shivdasani P, et al. MET exon 14 mutations in nonsmall-cell lung cancer are associated with advanced age and stage-dependent MET genomic amplification and c-Met overexpression. J Clin Oncol 2016;34:721-30. https://doi.org/10.1200/JCO.2015.63.4600
  67. Hong L, Zhang J, Heymach JV, Le X. Current and future treatment options for MET exon 14 skipping alterations in non-small cell lung cancer. Ther Adv Med Oncol 2021;13:1758835921992976.
  68. Drilon A, Clark JW, Weiss J, Ou SI, Camidge DR, Solomon BJ, et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat Med 2020;26:47-51. https://doi.org/10.1038/s41591-019-0716-8
  69. U.S. Food and Drug Administration. Tabrecta, highlights of prescribing information [Internet]. Silver Spring: U.S. Food and Drug Administration; 2020 [cited 2022 Nov 27]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf.
  70. Awad MM, Leonardi GC, Kravets S, Dahlberg SE, Drilon A, Noonan SA, et al. Impact of MET inhibitors on survival among patients with non-small cell lung cancer harboring MET exon 14 mutations: a retrospective analysis. Lung Cancer 2019;133:96-102. https://doi.org/10.1016/j.lungcan.2019.05.011
  71. Socinski MA, Pennell NA, Davies KD. MET exon 14 skipping mutations in non-small-cell lung cancer: an overview of biology, clinical outcomes, and testing considerations. JCO Precis Oncol 2021;5:PO.20.00516.
  72. Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJ, et al. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 2020;383:944-57. https://doi.org/10.1056/NEJMoa2002787
  73. Seto T, Ohashi K, Sugawara S, Nishio M, Takeda M, Aoe K, et al. Capmatinib in Japanese patients with MET exon 14 skipping-mutated or MET-amplified advanced NSCLC: GEOMETRY mono-1 study. Cancer Sci 2021;112:1556-66. https://doi.org/10.1111/cas.14826
  74. Paik PK, Felip E, Veillon R, Sakai H, Cortot AB, Garassino MC, et al. Tepotinib in non-small-cell lung cancer with MET Exon 14 skipping mutations. N Engl J Med 2020;383:931-43. https://doi.org/10.1056/NEJMoa2004407
  75. Li AY, McCusker MG, Russo A, Scilla KA, Gittens A, Arensmeyer K, et al. RET fusions in solid tumors. Cancer Treat Rev 2019;81:101911.
  76. Drilon A, Hu ZI, Lai GG, Tan DS. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes. Nat Rev Clin Oncol 2018;15:151-67. https://doi.org/10.1038/nrclinonc.2017.175
  77. Drilon A, Oxnard GR, Tan DS, Loong HH, Johnson M, Gainor J, et al. Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 2020;383:813-24. https://doi.org/10.1056/NEJMoa2005653
  78. Gainor JF, Curigliano G, Kim DW, Lee DH, Besse B, Baik CS, et al. Pralsetinib for RET fusion-positive non-smallcell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study. Lancet Oncol 2021;22:959-69. https://doi.org/10.1016/S1470-2045(21)00247-3
  79. Lee SH. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc Respir Dis (Seoul) 2019;82:179-89. https://doi.org/10.4046/trd.2018.0068
  80. Kim YC, Won YJ. The development of the Korean Lung Cancer Registry (KALC-R). Tuberc Respir Dis (Seoul) 2019;82:91-3. https://doi.org/10.4046/trd.2018.0032