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a b s t r a c t

A comprehensive investigation of the Ronen method is performed in homogeneous and heterogeneous
slab problems from the Sood benchmark, considering isotropic and linearly-anisotropic problems. Three
finite differences implementations are exercised and compared. The results are compared to reference
solutions using one and two energy groups. The validation is performed for the criticality eigenvalue and
the fundamental neutron flux distribution. The results demonstrate the significantly improved accuracy
achievable by the Ronen method using a broad set of problems. For standard convergence tolerances, the
maximal deviation in criticality eigenvalue is less than ten pcm, and the maximal deviation in the spatial
distribution of the flux is less than 2%, always located near sharp interfaces or vacuum boundaries.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Ronen method (RM), evolved from the hypothesis of Ronen
in 2004 [1], is an iterative scheme that provides an improved
estimation of the criticality eigenvalue ðkeffÞ and the neutron flux
distribution using the diffusion approximation [2e4]. Ronen
derived an accurate relation between the integral expression of the
net current and the diffusion coefficient. Denote the neutron flux
distribution by f, the Fick’s law approximation for the neutron
current by JD, and the exact neutron current by J. Ronen hypothe-
sized that there exist diffusion coefficients such that

JDðr; EÞ ¼ �Dðr; EÞVfðr; EÞyJðr; EÞ; (1)

and postulated that by adjusting the degrees of freedom in the
diffusion coefficient, i.e., its spatial and spectral dependencies, an
improved diffusion approximation could be obtained. Specifically,
Ronen suggested that better estimates of the diffusion coefficient
could be possible by approximating the current with an integral
expression from transport theory, using however an isotropic
source determined with the same flux distribution from diffusion
theory. A straightforward implementation in slab geometry is to
recalculate the diffusion coefficient provided a known flux f, still
obtained with neutron diffusion,
by Elsevier Korea LLC. This is an
Dðx; EÞ)� JðfÞ=vxf: (2)

Unfortunately, rigorous mathematical proof for this assumption
was not provided and it is yet to be derived.

Tomatis and Dall’Osso [2] were the first to suggest an iterative
scheme for the implementation of the RM to obtain amore accurate
diffusion coefficient producing an improved neutron flux solution
by employing drift corrections to the interface currents. The use of
corrections on the net current that are proportional to the local flux
value (drift) was meant avoiding possible indeterminate division
occurring in regions of flat flux.

A pronounced advantage of the RM is the utilization of standard
neutron diffusion approximation codes to achieve transport-level
accuracy. The iteration procedure of the RM (Eq. (2)) employs the
integral transport expression only to calculate the total current
assuming the scalar flux (i.e., the solution of the diffusion approx-
imation) for the neutron source. This way, the diffusion approxi-
mation operator is inverted successively throughout the iterations,
but no transport operator is inverted at any time. In essence, the RM
simulates the transport calculation with a series of diffusion cal-
culations, driving the solution towards transport. For complex or
large enough systems, the computational cost of inverting the
transport operator is avoided and replaced by a series of much less
demanding diffusion calculations.

In 2011, Tomatis and Dall’Osso [2] demonstrated numerically the
Ronen postulate utilizing a two-group one-dimensional homoge-
neous slab problem, representative of a realistic PWR fuel assembly.
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They eliminated the possible division by zero in Eq. (2) in cases of
vanishing flux gradients by adopting surface current corrections in
the form of drift terms, similar to the ones used in Coarse Mesh
Finite Difference (CMFD) implementations [5].

Recently, Gross et al. [4] demonstrated the RM’s high accuracy
(comparing to standard diffusion approximation) utilizing two-
group heterogeneous slab problems. In their paper, Gross et al.
derived analytic expressions for the accurate relation between the
scalar flux, the total current, the angular moments of the angular
flux, and the anisotropic scattering source. These expressions allow
to consider the first moment of the scattering expansion (i.e., linear
anisotropy) in the source when using neutron diffusion. The RM’s
accuracy was evaluated against other numerical solutions using
discrete ordinate SN code, still using purely isotropic sources.

Gross et al. [4] provided valuable insights into the mechanism
underlying the RM and enabling it to achieve improved solutions
compared to diffusion ones, i.e., the localized nature of the current
correction terms. Gross et al. showed that highly localized spatial
and spectral variations in the current correction terms enable more
accurate reconstruction of flux gradients in regions where the
diffusion approximation invalidates, e.g., near bare boundaries,
next to interfaces, or in the vicinity of strong absorbers. Away from
these regions, where the diffusion approximation is valid, the
current corrections vanish. However, the set of numerical problems
was rather limited and was chosen mainly to explore the behaviour
of the RM’s correction terms.

Tomatis et al. [3] studied the RM in curvilinear geometries, and
derived analytic expressions of the neutron current, evaluated by
integral equations using the framework of the collision probability
method. Specifically, all the integrals werewritten bymaking use of
the first-flight escape probabilities. These expressions were inte-
grated as part of the RM numerical algorithm. As a consequence of
the limitation due to probabilities determined by the only isotropic
emission, Tomatis et al. noticed that the RM could not reproduce
reflection in halved slabs of a few mean free paths, that is where
even moments other than the scalar flux can be relevant. A fix-up
implemented in the same iterative process was proposed to
match the expected vanishing net current. A collision probability
solver based on the same escape probabilities was developed
providing the reference solutions.

In their work, results were represented for one-group homo-
geneous critical problems, with isotropic scattering, and the
fundamental neutron flux and eigenvalue were compared. Addi-
tionally, slow convergence of the neutron flux was noticed neces-
sitating many RM iterations. To overcome this issue, they
implemented the Damped Anderson Acceleration with Epsilon
Monotonicity (DAAREM) [6,7], which was applied only for the flux,
resulting in faster run-time and higher accuracy in the final results.
Nevertheless, only a limited amount of test problems were
examined.

In this article, the achievable accuracy of the RM is further
studied numerically. The solutions obtained by the RM are
comprehensively investigated and compared to reference solutions
available from the Sood benchmark test suite [8], relying on one
and two energy groups in homogeneous and heterogeneous
problems. Since the benchmark considers critical systems, the ac-
curacy of the RM is evaluated based on the criticality eigenvalue
keff (effective multiplication factor) and, in some cases, on the
neutron flux distribution at some positions with reference values
communicated from the benchmark. Given the critical dimensions
and material composition of the problem, the deviation of the
criticality eigenvalue from unity (in pcm) is considered. Benchmark
cases with linearly anisotropic scattering are also studied. This
comprehensive study of the RM against reference solutions is an
essential and valuable step for the validation and verification of the
735
RM.
The remainder of the article is organized as follows. In section 2,

the mathematical and physical formulation of the RM is given.
Section 3 describes the numerical implementation of the RM. In
section 4, the results of 18 problems are presented and discussed.
Lastly, conclusions are given in section 5.

2. Theoretical background of the Ronen method

In slab geometry with linearly-anisotropic scattering and in the
absence of entering particles at the boundaries, the integral
expression for the total current is given by [4].

Jðx; EÞ ¼ 1
2

ða
0

dx0E2½tðx0; x; EÞ�sgnðx� x0Þq0ðx0; EÞ

þ 3
2

ða
0

dx0E3½tðx0; x; EÞ�q1ðx0; EÞ; (3)

where E2 and E3 are the second- and third-order exponential in-
tegral functions [9], respectively, a is the slab width, t(x0, x, E) is the
optical length

tðx0; x; EÞ≡sgnðx� x0Þ
ðx
x0

sðx00
; EÞdx00

; (4)

and s(x, E) is the total macroscopic cross-section. The source terms
in Eq. (3) represent the isotropic and linearly-anisotropic neutron
sources [4],

q0ðx; EÞ ¼
ð∞
0
dE0

"
ss;0ðx; E) E0Þ þ cðEÞ

keff
nsf ðx; E0Þ

#
fðx; E0Þ; (5a)

q1ðx; EÞ ¼
ð∞
0
dE0ss;1ðx; E) E0ÞJðx; E0Þ; (5b)

where ss,0 and ss,1 are the isotropic and linearly-anisotropic
scattering cross-sections, c(E) is the fission spectrum, keff is the
effective multiplication factor, n is the average number of neutrons
emitted per fission, sf is the fission cross-section, and f and J are the
first two moments of the angular flux, identified by definition as
the scalar flux and the net current, respectively. The presence of the
net current at both sides of Eq. (3) is resolved through the RM it-
erations. Note that this expression does not include contributions of
other fixed neutron sources in the slab [4].

Eqs. 2,3,5a and 5b, reveal the fundamental postulate of the
Ronen method, extended to problems with linearly-anisotropic
scattering. While the expression used to calculate the total cur-
rent is an accurate expression derived from the integral transport
theory (Eq. (3)), the neutron sources used for this (transport)
expression are calculated using the scalar flux obtained by diffusion
theory and an integral estimation of the net current. This hybrid
transport-diffusion approach is iterated (Eq. (2)) to improve the
diffusion-based solutions.

3. Numerical implementation of the Ronen method

3.1. Discretization of the current by its integral form

The problems considered in this article assume one-
dimensional slab geometries, isotropic and linearly-anisotropic
scattering, and homogeneous and heterogeneous media. Hence,
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the spatial discretization throughout the article is done according
to the notation shown in Fig. 1. The space is divided into I cells,
where i ¼ 0 and i ¼ I � 1 are the leftmost and rightmost cells,
respectively. Cell i is centered around xi, its width is Dxi, and its left
and right interfaces are located at xi � Dxi/2 and xi þ Dxi/2,
respectively. For brevity and clarity, the left and right interfaces of
cell i are denoted by xi±1/2.

The detailed derivation of a discretized form of the integral
expression for the neutron current (Eq. 3) in one-dimensional
multigroup notation was reported in a previous work [4], and is

Jg
�
xiþ1=2

�
¼ 1

2

XI�1

j¼0

q0;g;j
sg;j

n
E3

h
tg
�
xjþ1=2; xiþ1=2

�i
� E3

h
tg
�
xj�1=2; xiþ1=2

�io
sgnði� jÞ

þ3
2

XI�1

j¼0

q1;g;j
sg;j

n
E4

h
tg
�
xjþ1=2; xiþ1=2

�i
� E4

h
tg
�
xj�1=2; xiþ1=2

�io
;

(6)

where sg,j and q0/1,g,j are the cell-averaged total macroscopic
cross-section and isotropic and linearly-anisotropic sources of
group g in cell j, respectively. The optical length is given by

tgðxi; xjÞ ¼ sgnði� jÞ
Xi

p¼j
sg;pDxp: (7)

For the linearly-anisotropic scattering, the second term of Eq. 6
is present, and the source q1,g,j (Eq. 5b) is computed with a given net
current. A proper estimation of this net current is provided for
computing the linearly-anisotropic neutron source term. In the
latter case, the net current at the first iteration is estimated iso-
tropically; afterward, for successive iterations, the net current is
given by the prior value of the integral expression for the current,
this time with the linearly-anisotropic source included (see the
next section 3.2).
3.2. Numerical schemes

Three different implementations of RM are studied. The first
scheme, denoted as RMD, implements the RM according to Ronen’s
original suggestion (Eq. 2) and is based on the redefinition of the
diffusion coefficient itself through successive iterations. The second
implementation, denoted as RMnet, implements the RM by adding
a correction drift term to the net neutron current at the cell’s
boundaries. This implementationwas previously studied [2,4], so it
will be discussed briefly and used for comparison with other
implementations. The third scheme, denoted as RMp, implements
the RM by adding corrections as drift terms to the partial neutron
currents at the cell’s boundaries. It is essentially similar to the
RMnet implementation, except that the correction term is arbi-
trarily halved on the two partial currents at each interface. Hence,
unlike RMnet, which applies a single degree of freedom per inter-
face per energy group, RMp applies two degrees of freedom per
interface per energy group, one for each partial current. RMp fol-
lows the implementation of the pCMFD scheme, which was
Fig. 1. Notation of the one-di
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introduced to stabilize the CMFD-acceleration in advanced trans-
port solvers [10].

The results for the isotropic cases are compared to a discrete
ordinate SN solver with N ¼ 128 discretized angles using Gauss-
Legendre quadrature [9], a collision probability method (CPM)
transport solver, and a standard diffusion solver. Two neutron
transport solvers are used for twomain reasons. First, as part of the
validation and verification process of the codes, they are compared
to existing benchmarks but also to each other. Second, the SN
method is based on the differential form of the neutron transport
equation, and can take into account any order or scattering
anisotropy, reproducing correctly reflection in the halved slab using
an appropriate number of directions.

The CPM, on the other hand, is based on the integral form of the
neutron transport equation and the collision probabilities are
calculated only for neutrons emitted isotropically in space [11]. The
collision probabilities are computed from the same escape proba-
bilities used to compute the net current in the RM (see Tomatis
et al. [3]). These solutions are finally validated with the results of
the SN solver. Therefore, only the SN solver can be used to validate
RM solutions in the presence of linearly-anisotropic scattering.

3.2.1. Standard multigroup diffusion - D0

The RM is based on obtaining improved solutions for the
neutron flux and criticality eigenvalue using a standard multigroup
diffusion solver. Hence, the RM iteratively inverts the multigroup
diffusion operator with converging correction factors, as detailed in
the following sections.

In this article, the implementation scheme for a standard (i.e., no
corrections) multigroup diffusion solver is denoted by D0. The one-
dimensional multigroup neutron balance equation describing the
volume-averaged flux in cell i is

Jg;iþ1=2 � Jg;i�1=2 þ sg;ifg;iDi ¼ qg;iDi; (8)

where

qg;i ¼
cg
keff

XG

g0¼1
nsf ;g0;ifg0;i þ

XG

g0¼1
ss;g)g0;ifg0;i: (9)

Substituting the standard finite difference approximation for Fick’s
law,

Jg;iþ1=2yJDg;iþ1=2≡�2Dg;iþ1=2
fg;iþ1�fg;i

Diþ1þDi
¼�eDg;iþ1=2ðfg;iþ1�fg;iÞ;

(10)

with eDg;iþ1=2≡2Dg;iþ1=2=ðDiþ1 þDiÞ, yields the (finite) difference
equations which constitute the multigroup diffusion operator,

�eDg;i�1=2fg;i�1 þ
�eDg;iþ1=2 þ eDg;i�1=2 þ st;g;iDi

�
fg;i

� eDg;iþ1=2fg;iþ1 ¼ qg;iDi:
(11)

The P1 approximation leads to the classic definition of the
diffusion coefficient, which is based on the transport cross section
str,g,i ¼ st,g,i � ss,1,g,i, resulting in Dg,i ¼ 1/(3str,g,i) [12]. Moreover, the
diffusion coefficients are always needed on the cell interfaces, and
mensional spatial mesh.
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first order approximations of Fick currents at both sides of the
interface allow to obtain the following expression:

Dg;iþ1=2 ¼ Di þ Diþ1

Di
�
Dg;i þ Diþ1

�
Dg;iþ1

: (12)

After the diffusion constants are known, this arrangement forms
a set of G � I linear equations in a three-diagonal matrix at the left
hand side. Void boundary conditions were used for the diffusion
solver. For the left boundary, e.g.,

JD;g;�1=2 ¼ �Dg;�1=2
fg;0

D0
�
2þ zg

; (13)

where zg is the extrapolation length of group g. The Marshak
boundary condition is obtained if zg ¼ 2Dg,�1/2, but a value of
zg ¼ 2.13Dg,�1/2 is recommended from the literature [13]. The
eigenvalue problem is iteratively solved by power iterations to
obtain the neutron flux fg,i and the multiplication factor (the
keff-eigenvalue). Using the standard notation for the migration
operator ðMÞ and the fission operator ðFÞ, the iterative inversion of
the diffusion eigenvalue problem (the power iteration) can be noted
as

fðlþ1Þ ¼ 1

kðlÞeff
M�1FfðlÞ; kðlþ1Þ

eff ¼ kðlÞeff
Cfðlþ1Þ;Ffðlþ1ÞD
Cfðlþ1Þ;FfðlÞD

; (14)

where l is the power iteration index and C, D stands for the inner
product in space and energy. Eq. 14 represents the standard solver
of the neutron diffusion problem [14].

3.2.2. Diffusion coefficient correction - RMD

The computational scheme that implements the original Ronen
suggestion is based on iterative redefinition of the diffusion coef-
ficient itself according to Fick’s law (Eq. 2). The corrections to the
initial diffusion coefficient are local in space and energy in any
implementation tested so far and are calculated iteratively ac-
cording to Eq. 2. This implementation is denoted by RMD.

The resulting (corrected) diffusion coefficient shows pro-
nounced spatial and spectral dependences. Near sharp interfaces,
strong absorbers, and outer boundaries, the diffusion coefficient
shows significant local changes. Far from these interfaces, the
diffusion coefficient hardly changes since the diffusion approxi-
mation is valid, provided that the ratio Sa/Ss is low. In that sense,
the change in the diffusion coefficient (near sharp interfaces)
compared to its original value is a measure to the diminishing
validity of the diffusion approximation in that local region.

In the diffusion coefficient correction scheme, the RM is
implemented as follows. Given a geometry and material composi-
tion (i.e., macroscopic cross sections), a first guess for the multi-
group flux and keff-eigenvalue is calculated using standard
multigroup diffusion (Eq. 14). Regardless of the initial definition of
the diffusion coefficient, the RMwill subsequently redefine it. Then,
the source term to use in the integral transport equation, Eq. 6, is
calculated with the flux obtained by diffusion and the current ob-
tained by the same Eq. 6 at the previous iteration, in order to obtain
the next estimate of the current.

Once a new estimation for the current is obtained, a corrected
diffusion coefficient is calculated using Ronen’s original iterative
equation (Eq. 2). Flux gradients are approximated by central finite
differences using the cell-averaged fluxes assumed as placed at the
cell center. The migration operator M is updated with the new
diffusion coefficient and a new solution for the flux and
keff-eigenvalue is calculated using standard multigroup diffusion.

The operator notation for the RM iterative scheme is
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fðrþ1Þ ¼ 1

kðrÞeff

MðrÞ�1FfðrÞ; (15)

where r is the RM iteration index and the migration operator de-
pends on the corrected diffusion coefficient, MðrÞ≡M½DðrÞ�. A flow
chart of the RM implementation scheme is shown in Fig. 2.

An obvious difficulty of this implementation is handling cases in
which the denominator of Eq. 2 tends to zero. In this benchmark,
vanishing gradients can occur where the scalar flux shows
maximum or minimum values, usually at the center of symmetric
problems or in heterogeneous problems alternating diffusive and
multiplying media, as it happens for the thermal flux in a slab with
a fuel-moderator interface. At these points, the code behavior may
become unpredictable and numerical instabilities may arise.

In the numerical scheme used for this implementation, the
diffusion coefficient is corrected where the neutron current is
calculated, i.e., at the cells’ interfaces. A threshold (10�6) on small-
enough current prevents division by zero with vanishing flux gra-
dients, hence the recalculation of the diffusion coefficient is avoi-
ded after detection of negligible currents. In symmetric cases,
possible division by zero can happen when the mesh is composed
of an even number of cells. An odd number of cells in the mesh is
usually enough to avoid this problem. A more robust scheme is
currently under development without bypassing the recalculation
of the coefficient. Notwithstanding this fixup, the iterative scheme
showed instabilities caused by small negative values of the diffu-
sion coefficient arising near the vacuum boundary during the it-
erations. This led to non-convergence on the flux, or even negative
flux, thus invalidating the solution. Further investigations are
however needed as future research to ensure numerical robustness.
3.2.3. Net current correction - RMnet

The computational scheme that implements the net current
correction is based on iterative corrections of the net currents at the
cells’ interfaces. The correction terms are phenomenological de-
grees of freedom (one per interface per energy group) that are
added to the finite difference neutron diffusion equation (Eq. 11).

This implementation, denoted as RMnet, was previously studied
and is the first implementation of the RM [2,4]. Similarly to the
corrected diffusion coefficient (see section 3.2.2), the resulting
correction factors exhibit strong spatial and spectral dependence
near sharp interfaces, and vanish where the diffusion approxima-
tion is valid.

The new correction terms are introduced for the surface cur-
rents at cell interfaces xiþ1/2, and are denoted by dJ,

dJg;iþ1=2 ¼ Jg;iþ1=2 � JDg;iþ1=2; (16)

where Jg,iþ1/2 is the net current obtained from the integral transport

expression for the surface current (Eq. 6), and JDg;iþ1=2 is the current
obtained from the diffusion approximation by Fick’s law (Eq. 10).
The net current correction term is defined as [5].

dJg;iþ1=2≡� dDg;iþ1=2ðfg;iþ1 þfg;iÞ: (17)

The term dDg,iþ1/2 has an arbitrary definition, and in [2,4] it was
divided by the halved sum of the cell widths, here omitted to have
fewer floating point operations in the implementation. In any case,
the sum of the fluxes stands for some average flux at the interface
to physically represent a drift.

Substituting the net current as defined in Eq. 16 into the one-
dimensional multigroup neutron balance equation (Eq. 8) yields



Fig. 2. A flow chart of the Ronen method iterations as implemented using three schemes, RMD , RMnet , and RMp .
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�
JDg;1þ1=2 þ dJg;iþ1=2

�
�
�
JDg;1�1=2 þ dJg;i�1=2

�
þ sg;ifg;i ¼ qg;i:

(18)

Substituting Eqs. 10 and 17 into Eq. 18 and rearranging terms
gives the discretized form of the net current-corrected one-
dimensional multigroup neutron diffusion equation,

�
� D

�
g;i�1=2 þ dDg;i�1=2

�
fg;i�1

þ
�
D
�
g;iþ1=2 � dDg;iþ1=2 þ D

�
g;i�1=2 þ dDg;i�1=2 þ sg;iDi

�
fg;i

þ
�
� D

�
g;iþ1=2 � dDg;iþ1=2

�
fg;iþ1 ¼ qg;iDi:

(19)

Note that in case the correction terms vanish, the standard
multigroup neutron diffusion operator is recovered (Eq. 11).
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In the net current correction scheme, the diffusion coefficient
remains unchanged. Instead, at each RM iteration, once a new
estimation for the current is obtained, the correction terms dJ are
calculated using Eq. 16. The correction factors dDg on the left
boundary take the form of dDg,�1/2¼�dJg,�1/2/fg,0 and an equivalent
form is used for the right boundary. The migration operator MðrÞ is
reconstructed with the new correction terms (Eqs. 17e19) and a
new solution for the flux and keff-eigenvalue is calculated (Eq. 15).
This process is repeated until convergence is achieved for the flux
and eigenvalue. A flow chart of the net current correction imple-
mentation scheme is shown Fig. 2.

3.2.4. Partial currents correction - RMp

The computational scheme that implements the partial currents
correction takes advantage of the fact that partial currents calcu-
lation at the cells’ interfaces is possible without additional
computational overhead. The correction terms in this scheme are
two degrees of freedom (per interface per energy group) that are
added to the finite difference neutron diffusion equation (Eq. 11).

The development of this implementation, denoted as RMp, was
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mainly motivated by its reported enhanced numerical stability and
convergence characteristics in CMFD-accelerated transport
[10,15,16].

The new correction terms are introduced for the surface cur-
rents at cell interfaces according to

Jiþ1=2 ¼ Jþiþ1=2 � J�iþ1=2 ¼ JDiþ1=2 þ dJþiþ1=2 þ dJ�iþ1=2: (20)

An upwind definition with respect to the direction of flight of the
neutrons is used for the corrections [15,16],

dJþiþ1=2 ¼ �dDþ
iþ1=2fi and dJ�iþ1=2 ¼ �dD�

iþ1=2fiþ1: (21)

Note that the signs before the correction terms are arbitrary, with
no need to follow a specific physical meaning. The current calcu-
lated by diffusion is equally distributed over the partial currents to
compute the corrective coefficients dD±,

Jþiþ1=2 �
1
2
JDiþ1=2 ¼ �dDþ

iþ1=2fi; (22a)

J�iþ1=2 þ
1
2
JDiþ1=2 ¼ þdD�

iþ1=2fiþ1: (22b)

Hence, once the partial currents and the diffusion current are
known, the correction terms can be evaluated. One can recover
RMnet if the correction factors are set equal at all interfaces
dDþ ¼ dD�.

The substitution of Eqs. 20-22 into the neutron balance equation
(Eq. 8) yields the discretized form of the partial current-corrected
one-dimensional multigroup neutron diffusion equation,�

�D
�
g;i�1=2þdDþ

g;i�1=2

�
fg;i�1�

�
D
�
g;iþ1=2þdD�

g;iþ1=2

�
fg;iþ1

þ
�
D
�
g;iþ1=2�dDþ

g;iþ1=2þD
�
g;i�1=2þdD�

g;i�1=2þsg;iDi

�
fg;i¼qg;iDi:

(23)

Note that also in this scheme, if the correction terms vanish, the
standard multigroup neutron diffusion operator is recovered (Eq.
11). Hence, in a weakly absorbing medium and several mean free
paths away from the boundary or a strong absorber, all correction
factors dJ± are expected to vanish and the net current should be
reproduced by the diffusion current. The estimation of the correc-
tion factors on the boundaries is similar to the RMnet imple-
mentation, except that incoming correction currents dJ± are
eliminated for each vacuum boundary. A flow chart of the partial
currents correction implementation scheme is shown Fig. 2.

4. Results

4.1. Benchmark description

The analytic benchmark of Sood et al. (2003) [8] presents one-
dimensional homogeneous and heterogeneous critical configura-
tions, with the geometrical properties, shown in Table 1, including
the associated one- and two-group cross sections, given here in
Appendix A (Tables A1-A4). The nomenclature of the problem
identifiers follows Sood’s notations, specifically, the first digit after
the material identifier denotes the energy group, and the second is
the scattering order. The fast and thermal energy groups are
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denoted as 1 and 2, respectively. The scattering order is identified
as 0 for isotropic and 1 for linearly-anisotropic scattering. For some
problems, the spatial distribution of the flux is given at specific
points (Table A5-A6). The test suite contains cases with scattering
anisotropy (linearly and quadratically). Sood’s benchmark contains
also spherical and cylindrical geometries, which are beyond the
scope of his paper.

A total of 18 problems are solved in this study. The problems can
be categorized into four different slab configurations shown in
Fig. 3. These include symmetric bare and reflected slab (Fig. 3a and
b), asymmetric reflected slab (Fig. 3c), and asymmetric three-media
slab (Fig. 3d). The critical dimensions of the fuel andwater reflector,
marked as Lc and LH2O, respectively, are given for each problem in
Table 1.

The Li points mark the locations where a reference solution for
the normalized flux is provided for some problems (see Tables A5
and A6). The fluxes are normalized by the value at the center of
the slab, except for problem #30, where the flux is normalized by
the flux at the left boundary, and the Li correspond to the interfaces
between different materials. For two-energy groups, the scalar
fluxes are normalized with the fast group flux at the center. The
two-energy groups cross sections given in Table A3 are similar to
239PU (Prob. #45), 235U (Prob. #48), a realistic enriched uranium-
aluminum-water assembly (prob. 51), and a 93% enriched 235U
bare slab model of a university research reactor (Prob. #54) and
water reflected (Probs. #58-#59).
4.2. The local behavior of the RM correction terms

Three test cases are considered to demonstrate the spatial
behavior of the correction terms in the different implementations
in presence of vacuum boundary. The selected test cases are one-
dimensional one-group problems, of which two are homoge-
neous, and one is heterogeneous. Problem #22 is a large uranium-
heavy water mixture slab with a width of ~10 mean free paths
(mfp). Problem #2 is a small plutonium slab with ~1 mfp width.
Problem #4 is a small heterogeneous problem of water-reflected
plutonium slab, with a typical width of ~0.5 mfp.

Fig. 4 shows the RM’s neutron flux, the flux deviation from the
reference flux and the spatial distribution of the correction factors
for the selected problems. The flux is shown for the right part of the
plane due to symmetry, and the reference solutions are calculated
using the collision probability code (CPM). The spatial discretiza-
tion for all problems is D z 0.01 mfp (equidistant mesh), and the
flux is normalized by the total reaction rate.

The standard diffusion underestimates the flux at the slab center
and overestimates it near the boundary. This is less pronounced in
the larger and more diffusive problem (#22) but very noticeable at
the smaller less diffusive problems #2 and #4. The flux obtained by
the three implementations of the RM matches well the reference
solutions, with a maximal deviation of ~1%.

The correction factors of the RM exhibit interesting spatial
behavior. For the large slab (problem #22), the corrected diffusion
coefficient DNEW(x) (of the RMD implementation) is close to the
original diffusion coefficient D0 away from the boundaries but
changes reduces rapidly towards the boundary, forcing a steep
gradient on the flux. For the smaller problems (problem#2 and #4),
the corrected DNEW(x) is smaller compared to D0 at the slab center
and decreases even further towards the interfaces or the boundary.

The correction factor dDNET(x) (of the RMnet implementation)



Table 1
Critical dimensions of each problem [8].

Config. Prob. # / ID Lc [cm/mfp] Comments

3a 2 / PUa-1-0-SL 1.853722 / 0.605055 Isotropic
6 / PUb-1-0-SL 2.256751 / 0.73660355
12 / Ua-1-0-SL 2.872934 / 0.93772556
22 / UD2O-1-0-SL 10.371065 / 5.6655054562
45 / PU-2-0-SL 1.795602 / 0.396469
48 / U-2-0-SL 3.006375 / 0.649377
51 / UAL-2-0-SL 7.830776 / 2.099940
54 / URRa-2-0-SL 7.566853 / 4.971120

32 / PUa-1-1-SL 0.77032 / 0.77032 Linearly
34 / PUb-1-1-SL 0.79606 / 0.79606 anisotropic
71 / URRa-2-1-SL 9.49590 / 6.23840

Config. Prob. # / ID Lc [cm/mfp] LH2O [cm/mfp]

3c 3 / PUa-H2O(1)-1-0-SL 1.478450 / 0.482566 3.063725 / 1.0

3b 4 / PUa-H2O(0.5)-1-0-SL 1.317862 / 0.43015 1.531863 / 0.5
25 / UD2O-H2O(1)-1-0-SL 9.214139 / 5.03350 1.830563 / 1.0
26 / UD2O-H2O(10)-1-0-SL 8.428096 / 4.60410 18.30563 / 10.0
58 / URRb-H2Oa(1)-2-0-SL 6.696802 / 5.94147 1.126152 / 1.0
59 / URRb-H2Oa(5)-2-0-SL 4.863392 / 4.31485 5.630757 / 5.0

Config. Prob. # / ID Units Fe (left) U-235 Fe (right) Na

3d 30 / Ue-Fe-Na-1-0-SL cm 0.317337461 5.119720083 0.317337461 2.002771002
mfp 0.0738 2.0858098 0.0738 0.173
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effectively vanishes where diffusion is valid, i.e., away from in-
terfaces or boundaries. However, it changes rapidly in the vicinity of
interfaces and boundaries.

The tandem correction factors, dD±(x) (of the RMp imple-
mentation), exhibit similar qualitative behavior as the dDNET(x)
correction factor. However, they do not vanish where diffusion is
valid. Rather, they asymptotically approach ± 0.25, which is
explained as follows. Consider a cell interface iþ 1/2 and the partial
current on that interface Jþiþ1=2. The first-order diffusion approxi-

mation for the current is

Jþiþ1=2z
fiþ1=2

4
þ Jiþ1=2

2
: (24)

Subtracting Eq. 22a from Eq. 24 yields

fiþ1=2

4
þ Jiþ1=2

2
�
"
JDiþ1=2

2
� dDþ

iþ1=2fi

#
z0: (25)

Assuming that the diffusion approximation is valid, i.e.,

JDiþ1=2yJiþ1=2 and that fiþ1/2yfi results in dDþ
iþ1=2y� 1= 4. The
Fig. 3. Four different geometry configuration
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same process for J� using Eq. 22b yields dD�
iþ1=2z1=4. Under the

same assumptions, the correction factors of RMnet will vanish, i.e.,
dD z 0, as shown in Fig. 4.

The physics that governs the RM corrections follows the prin-
ciple that the larger the diffusion coefficient, the smoother the flux
is. The value of the diffusion coefficient represents the strength of
the spatial coupling between the flux in nearby cells (physically
realized by neutron leakage). A zero diffusion coefficient results in
complete spatial decoupling of the flux, i.e., the flux in each cell
does not depend on adjacent cells. The RM takes advantage of this
feature and spatially modifies the diffusion coefficient. By
decreasing the value of the diffusion coefficient near interfaces and
boundaries, the effective diminished diffusion coefficient (in all
implementations) enables steeper gradients of the flux. Since the
corrections are derived using the integral transport expression for
the neutron current, the diffusion solution is driven towards the
transport one, thus providing an improved diffusion solution.

Table 2 shows the flux deviations at 4 locations for a simple
diffusion solver and the three implementations of the RM. Cases
#32 and #34 are small (~1.5 mfp) homogenous one-group linearly-
anisotropic problems. Results were compared to S128 with spatial
discretization of D z 0.01 mfp. Maximal flux deviations were
s of the problems solved in this study.



Fig. 4. Results of three one-group symmetrical problems, obtained by standard diffusion, RMD , RMnet , RMp , and a reference CPM codes, with spatial discretization of D z 0.01 mfp.

Table 2
Flux deviation in [%] for problems #32 and #34 compared to S128.

Li PUa-1-1-SL (#32) PUb-1-1-SL (#34)

D0 RMD RMnet RMp D0 RMD RMnet RMp

L1 ¼ 0.25 -0.669 0.003 0.001 0.000 -0.695 0.000 0.002 0.000
L2 ¼ 0.5 -3.035 0.005 0.002 0.000 -3.145 0.000 -0.001 -0.001
L3 ¼ 0.75 -8.854 0.008 0.001 -0.007 -9.133 0.002 -0.006 -0.003
L4 ¼ 1.0 -32.231 -1.127 -1.353 -1.620 -32.991 -0.916 -1.570 -1.543
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observed in the proximity of vacuum boundary (L4), where simple
diffusion gives the largest deviation of around ~32%, while the three
implementations of the RM range between 0.9 � 1.6%.
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4.3. Accuracy of the criticality eigenvalue

Table 3 presents the differences in reactivity calculated with the
three implementation of the Ronenmethod (RMD, RMnet, and RMp)
and standard diffusion (D0). For comparison and scale, the results of
a discrete ordinates code with 128 angles (S128) and a collision
probability method code (CPM) are also shown for the selected set
of problems. The deviations are shown in units of reactivity

(Dr ¼ ðk�1
ref �k�1Þ � 105 [pcm]), where kref equals unity. In all

problems, the cell size is D z 0.01 mfp.
Looking at Table 3, it is clear that standard diffusion with classic

extrapolated distance boundary conditions fails in evaluating the
criticality eigenvalue. The smaller deviations appear in problems



Table 3
Deviation of the criticality eigenvalue from unity for the benchmark problems [8], using three RM implementations, standard diffusion (D0), S128 and CPM. RM imple-
mentations also show in round brackets the number of required iterations. In all problems, the cell size is D z 0.01 mfp. Results are in pcm.

Prob. #/ID D0 RMD RMnet RMp S128 CPM

2/PUa-1-0-SL -12,109 -2 (120) -3 (90) -3 (90) -4 -2
3/PUa-H2O(1)-1-0-SL -13,488 -5 (130) -5 (129) -5 (138) -5 -4
4/PUa-H2O(0.5)-1-0-SL -15,926 -2 (130) -7 (150) -5 (150) -2 -2
6/PUb-1-0-SL -9,440 -2 (98) -1 (67) -1 (80) -2 -1
12/Ua-1-0-SL -7,553 -2 (110) -2 (77) -2 (95) -2 -1
22/UD2O-1-0-SL -164 -1 (136) -1 (130) -1 (136) 0 0
25/UD2O-H2O(1)-1-0-SL -260 0 (126) 0 (126) 0 (130) 0 -1
26/UD2O-H2O(10)-1-0-SL -355 0 (136) 0 (166) 0 (129) 0 0
30/Ue-Fe-Na-1-0-SL -6,744 -1 (140) -2 (140) -1 (138) -1 -2
45/PU-2-0-SL -14,664 -4 (126) -4 (139) -4 (140) -5 -1
48/U-2-0-SL -8,414 -3 (150) -3 (140) -3 (150) -3 -1
51/UAL-2-0-SL -3,759 -7 (140) -7 (138) -8 (117) 0 -2
54/URRa-2-0-SL -644 -3 (210) -3 (165) -3 (156) 0 0
58/URRb-H2Oa(1)-2-0-SL -278 -3 (135) -3 (167) -3 (175) 0 -2
59/URRb-H2Oa(5)-2-0-SL -305 - -2 (219) -2 (134) 1 -1

32/PUa-1-1-SL -10,157 1 (165) 1 (190) 1 (120) 0 -
34/PUb-1-1-SL -10,230 -2 (184) -2 (230) -2 (262) -2 -
71/URRa-2-1-SL -18,167 -3 (227) -1 (256) -3 (229) 0 -

Table 4
Criticality eigenvalue accuracy of D0, RMnet , and S128 with various spatial dis-
cretizations for three representative benchmark problems [8]. Results are in pcm.

D[mfp] PUa-1-0-SL (#2) UD2O-H2O(1)-1-0-
SL (#25)

PUa-1-1-SL (#32)

D0 RMnet S128 D0 RMnet S128 D0 RMnet S128

0.1 -11,942 -147 -109 -258 -25 -1 -10,036 -128 -77
0.05 -12,065 -41 -31 -250 -6 0 -10,130 -29 -17
0.01 -12,109 -3 -4 -260 0 0 -10,157 1 0
0.005 -12,110 -1 -2 -260 0 0 -10,158 2 0
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which are larger (a 5mfp) andmore “diffusive”, e.g., problems #22
and #54, where the uranium fuel is mixed with heavy water, or
heavily reflected and moderated problems, e.g., #25, #26, #58, and
#59.

The deviations of the RM implementations are less than 10 pcm
for all problem, close to the transport codes’ results. In addition, the
number of Ronen iterations required to fulfill the convergence
tolerance (10�6) is shown in Table 3 in round brackets for all the RM
implementations; no significant differences in the required number
of iterations have been observed among the three implementa-
tions. It should be stressed that the RM does not invert a transport
operator, it rather uses the standard diffusion solver iterativelywith
appropriate correction factors. The RM and transport codes un-
derestimate the criticality eigenvalue in all cases, even though by
only a few pcm.

The accuracy of the eigenvalue ðkeffÞ in pcm with respect to
different values of the spatial discretization is shown in Table 4. D0,
RMnet, and S128 are tested for three representative problems, bare
slab with isotropic (#2) and linearly-anisotropic (#32) scattering
and reflected and moderated slab (#25). Simple diffusion shows
Table 5
Flux deviation in [%] for problem #6.

PUb-1-0-S

Li D0 RMD RM

L1 ¼ 0.25 -0.635 0.002 0.0
L2 ¼ 0.5 -2.884 0.000 0.0
L3 ¼ 0.75 -8.457 0.000 -0.0
L4 ¼ 1.0 -31.234 -0.998 -1.3
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large deviations using finer meshes, while RMnet and S128 show
opposite trends. For the less diffusive problems (#2 and #32),
tighter meshes are needed to reach the accuracy of less than 10
pcm; the water-reflected problem (#25) reaches this accuracy with
coarser meshes.
4.4. Accuracy of the flux distribution - comparison to the reference
solutions

The deviation of the calculated flux from the reference value
given by Sood et al. 2003 [8] (Table A5 and A6), with Df¼ (fref -
fRM)/fref � 100 [%], are shown in Tables 5-10 for problems #6, #12,
#30, #54, and #71 at positions Li. The fluxes at Li are normalized
against the flux at a specific location; the normalization positions of
problems # 6 and # 12 are at the center of the slab, problems #54
and #71 is two group problem and the fluxes are normalized by the
fast flux at the slab’s center, and problem #30 at the left-most
boundary (all normalization locations are marked by a blank cir-
cle in Fig. 3).

The calculated flux was obtained using standard diffusion (D0),
three implementations of the RM (RMD, RMnet, RMp), a discrete
ordinates code (S128), and a Collision probability method (CPM). The
spatial discretization in all the calculations is D z 0.01 mfp, and
void boundary conditions implied. All the codes above use central
finite difference discretization scheme for the flux, which is
described as cell-centered. Hence, in order to obtain an estimation
of the flux at inner interfaces and the boundary, a linear interpo-
lation is performed.

For standard diffusion (denoted by D0) in slab problems (#6,
#12, #22, #54, and #71), the flux deviation increases from the slab’s
center towards the outer-most boundary. The deviations range
between 0.5-2% close the center and 23e83% at the boundary (L4).
L (#6)

net RMp S128 CPM

04 0.004 0.000 0.000
03 0.004 0.000 0.000
04 0.001 0.002 0.000
33 -1.242 -0.060 -0.239



Table 6
Flux deviation in [%] for problem #12.

Ua-1-0-SL (#12)

Li D0 RMD RMnet RMp S128 CPM

L1 ¼ 0.25 -0.525 0.001 0.001 0.000 0.001 0.000
L2 ¼ 0.5 -2.427 0.000 0.000 0.000 0.001 0.000
L3 ¼ 0.75 -7.386 -0.001 0.001 0.003 0.002 0.000
L4 ¼ 1.0 -30.708 -0.940 -1.148 -1.128 -0.173 -0.222

Table 7
Flux deviation in [%] for problem #22.

UD2O-1-0-SL (#22)

Li D0 RMD RMnet RMp S128 CPM

L1 ¼ 0.25 -0.014 0.000 0.000 0.000 0.000 0.000
L2 ¼ 0.5 -0.082 0.000 0.000 0.000 0.000 0.000
L3 ¼ 0.75 -0.470 0.000 0.000 0.000 0.000 0.000
L4 ¼ 1.0 -24.157 -0.934 -1.065 -0.984 -0.133 -0.173

Table 8
Flux deviation in [%] for problem #30.

Ue-Fe-Na-1-0-SL (#30)

Li D0 RMD RMnet RMp S128 CPM

Fe-U 10.054 0.482 0.543 0.550 -0.205 -0.004
U-Fe 16.240 0.552 0.632 0.646 -0.111 0.087
Fe-Na 12.544 0.405 0.474 0.491 -0.261 -0.052
Na -1.853 -0.027 0.011 0.012 0.000 0.003

Table 9
Flux deviation in [%] for problem #54. All values are normalized with the fast group flux at the center. The upper and lower values are of the fast and thermal groups,
respectively.

URRa-2-0-SL (#54)

Li g D0 RMD RMnet RMp S128 CPM

L1 ¼ 0.241394 1 -1.920 0.000 0.000 0.000 0.000 0.000
2 8.4470 0.002 0.001 0.002 0.000 0.000

L2 ¼ 0.502905 1 -8.050 0.000 0.000 0.000 0.000 0.000
2 -6.463 0.002 0.001 0.002 0.000 0.000

L3 ¼ 0.744300 1 -16.155 0.000 0.000 0.000 0.000 0.000
2 -31.506 0.003 0.002 0.002 -0.001 0.000

L4 ¼ 1.0 1 -49.261 -0.917 -1.174 -1.198 -0.142 -0.179
2 -83.587 -1.303 -1.305 -1.283 -0.795 -0.665

Table 10
Flux deviation in [%] for problem #71. All values are normalized with the fast group flux at the center. The upper and lower values are of the fast and thermal groups,
respectively.

URRa-2-1-SL (#71)

Li g D0 RMD RMnet RMp S128

L1 ¼ 0.2 1 -1.182 0.003 0.003 0.003 0.003
2 9.568 0.005 0.005 0.005 0.003

L2 ¼ 0.5 1 -7.132 0.024 0.024 0.024 0.024
2 -5.202 0.028 0.028 0.028 0.026

L3 ¼ 0.8 1 -16.463 0.091 0.091 0.091 0.091
2 -34.388 0.127 0.127 0.127 0.124

L4 ¼ 1.0 1 -48.500 -0.768 -1.343 -1.141 -0.027
2 -75.369 -1.379 -1.403 -1.372 -0.882
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In the case of problem #30, which is an asymmetric problem
(moderated on the right side), the deviations at three positions
within the slab range between 10-16%, and 1.8% at the right-most
boundary (thanks to the wide sodium region).
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The results obtained by the three RM implementations give
significantly improved results for the slab problems (#6, #12, #22,
#54, and #71). In the RM case, the flux deviations inside the slab are
in the order of milli-percent and can be considered negligible. The



Fig. 5. One-group flux deviation in symmetric problems, compared against S128 and
CPM codes. Results shown for the right-most boundary (L4) and cell width of D z 0.01
mfp.

Fig. 6. One-group flux deviation for asymmetric problem #3, compared against S128
and CPM codes. Results shown for 4 locations, shown in Fig. 3c. Cell size is D z 0.01
mfp.

Fig. 7. One-group flux deviation for asymmetric problem #30, compared against S128
and CPM codes. Results shown for four locations, shown in Fig. 3d. Cell size is Dz 0.01
mfp.

Fig. 8. Two-group flux deviation for various problems, compared against S128 and CPM
codes. Results shown for the right-most boundary (L4), and cell average of D z 0.01
mfp.
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only significant deviations, of around 1%, are observed on the slab’s
boundary. The RM also gives more accurate results within the
heterogeneous problem #30, with flux deviations of around 0.5%
on the inner material interfaces and about 0.1% on the right-most
boundary.

Finally, it is observed that the RMD implementation yields
smaller flux deviations compared to RMnet and RMp for most of the
problems. The transport solutions of S128 and CPM shows even
smaller deviations (of around 0.1%), with the S128 resulting in more
accurate solutions compared to CPM when the same mesh is used.

4.5. Accuracy of the flux distribution - comparison to the SN and
CPM solutions

Reference values for the flux are not given for all the problems in
Table 1. Therefore, a reference flux was calculated at four points for
all problems using S128 and CPM codes. Finer spatial discretization
was used for all problems, keeping D z 0.005 mfp.
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Visual representations of the results are shown in Figs. 5e8. The
results are categorized into homogeneous and heterogeneous
problems and energy groups. Additionally, the results for asym-
metric problems contain deviation at four positions (L1�4). Looking
at Figs. 5e8, round, triangle, and diamond markers represent the
results of RMD, RMnet, and RMp, respectively. White and gray filled
markers represent the deviation against S128 and CPM, respectively.
The bars represent the average deviation of the three RM imple-
mentations for each reference, where the white filled bar is against
S128 and the dotted filled bar against CPM. When available, addi-
tional comparisons against Sood et al. [8] reference solutions are
given, visible with black filled markers and bars filled with diagonal
lines.

In symmetrical problems, the error within the slab is negligible,
so only those on the boundary (L4) are considered. Fig. 5 shows the
absolute flux deviations for seven symmetrical one-group prob-
lems at L4. For most of the problems, it can be seen that RMD (round
marker) is more accurate than the other implementation of the RM,
and against all references. The flux errors are of the order of ~1%.
The same trend also appears in the comparison to reference solu-
tions (see Sec. 4.4). The average deviation against CPM is lower for
most of the problems (dotted bar), compared to S128 (white bar),
and Sood et al. (dashed lines bar).

Figs. 6 and 7 show one-group flux deviation for asymmetrical
problems #3 and #30. The neutron flux in both problems is
normalized using the flux on the left-most boundary. As before, the
deviation of RM against S128 is generally higher compared to the
deviation against CPM. The deviation of RMnet and RMp is the same
in all positions for both problems. Within the slab, the deviation of
RMD in problem #3 is higher than the other implementation, unlike
the other problems.

Fig. 8 shows the flux deviations for two-group problems with
the same marking as for one-group. The average deviations of the
RM compared to the S128 and CPM are almost the same for the
homogeneous problems #45, #48, #51, and #54, with slightly
higher deviation against S128. A reference flux for problem # 54 is



Table 11
CPU runtime (wall clock seconds) of RM, S128, and CPM simulating two-group, bare
and reflected problems with spatial discretization of D z 0.01 mfp. Results shown
for 10 realizations of each implementation.

Prob. # RMD RMnet RMp S128 CPM

54 35.1 ± 0.7 30.1 ± 0.3 28.7 ± 0.5 263.0 ± 3.2 100.8 ± 0.5
58 71.7 ± 1.1 54.5 ± 0.6 44.1 ± 1.4 475.8 ± 2.9 268.9 ± 2.3
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provided by Sood et al. (Table A6). The relatively large differences
are noticed with the heterogeneous problems #58 and #59, fa-
voring CPM. The RMD implementation could not produce results for
problem #59 due to the small size of Dx resulting in a convergence
problem. Larger values of Dx indeed resume convergence.

The differences in flux distribution accuracy between the
different RM implementations are relatively small for the homo-
geneous two-group problems, similar to the trend observed in one-
group problems (less than 0.5% difference). The most pronounced
difference is shown in problem #58, where the RMp flux deviation
is larger by ~1% compared to RMD and RMnet. The behavior of the
flux deviation for the different RM implementations is qualitatively
and quantitatively similar for the fast and thermal groups.

Considering asymmetrical problems, the deviation of the RM
compared to S128 was higher than of against CPM, resulting in
closer neutron flux obtained by RM, to the one of CPM. Over all, the
RM tends to provide closer results to CPM than S128, due to the fact
that both methods use the integral expressions of neutron
transport.

4.6. RM convergence performances

4.6.1. Run times
Average CPU run times for RM, S128, and CPM calculations of a

bare and reflected slab, are shown in Table 11. A total of ten re-
alizations for each implementation were carried out. These run
times were obtained using an intel core-i5 4.1GHz x12 CPU, with
32GB DDR4 memory, and Ubuntu OS. The spatial discretization cell
size is Dz 0.01 mfp. Both the relative flux and eigenvalue residuals
were below 10�6.

For these problems, the RM is three times faster than CPM (both
calculate the scalar flux) and eight times faster than S128. Looking at
RM implementations, the RMD implementation is slightly slower
Fig. 9. The convergence rate toward the final RM solution of the scalar flux and the
criticality eigenvalue for benchmark problem #4 [8].
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than RMnet and RMp. Note that the computer programs are written
in Pythonwhich is an interpreted language. As such, it is difficult to
provide accurate runtime estimates of the implemented algo-
rithms. A reprogram in low level languages may change the current
outcome. A more thorough investigation into the RM’s computa-
tional time performances is beyond the scope of this paper and will
be published elsewhere.
4.6.2. Convergence rate of the RM iterations
The convergence of the RM can be evaluated in two ways. First,

measure the “distance” of the solution in the RM kth iteration from
the final one. Second, another aspect of RM convergence can be
evaluated by measuring the ”distance” between the solutions of
two successive RM iterations. Both aspects relate closely to the
Anderson Acceleration (AA) through the DAAREM algorithm and its
parameters. In this study, the parameters of this acceleration al-
gorithm were taken as the recommended values for the general
case and were not optimized or studied [6,7]. Nonetheless, it would
be interesting to study the effect of the acceleration algorithm’s
parameters on the convergence rate of the RM, and we intend to
study it in future work.

The convergence rate of the neutron flux ðDðkÞ
f Þ and criticality

eigenvalue ðDðkÞ
keff

Þ with respect to the final RM solution are shown

in Fig. 9 for the three implementations of the RM for a reflected
problem (#4, shown in Fig. 4c). The convergence rate is calculated
according to

DðkÞ
f ≡max

�����fðkÞ � fRMfinal

fRMfinal

�����; DðkÞ
keff

≡

������
kðkÞeff � kRMfinal

eff

kRMfinal
eff

������; (26)

where fRMfinal and kRMfinal
eff are the final scalar flux distribution and

criticality eigenvalue calculated by the RM.
The convergence rate of the neutron flux, at the very first few

iterations, is relatively slow. For the last few tens of iterations, the
convergence rate increases gradually with a sharp increase toward
the final value of the RM. Small fluctuations have been noticed after
the 10th RM iteration typical of Anderson accelerated algorithems
applied to fixed-point iterative problem [17,18]. Furthermore, this
trend is similar for the three implementations. The behavior of the
flux through the RM iterations also affects the convergence rate of
Fig. 10. The convergence rate between two successive RM iterations of the scalar flux
and the criticality eigenvalue for benchmark problem #4 [8].
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the criticality eigenvalue. A similar trend is observed for DðkÞ
keff

but

with larger fluctuations with respect to DðkÞ
f .

The convergence rate of the neutron flux ðεðkÞf Þ and criticality

eigenvalue ðεðkÞkeff
Þ with respect to two successive RM iterations are

shown in Fig. 10 for the three implementations of the RM for a
reflected problem (#4, shown in Fig. 4c). The convergence rate is
calculated according to

ε
ðkÞ
f ≡max

�����fðkÞ � fðk�1Þ

fðk�1Þ

�����; ε
ðkÞ
keff

≡

������
kðkÞeff � kðk�1Þ

eff

kðk�1Þ
eff

������: (27)

The convergence rate measured between two successive itera-
tions does not change dramatically in the first few iterations, and
the rate of solution improvement is relatively steady initially. Sec-
ond, the DAAREM algorithm accelerates the Ronen method’s
convergence by order of magnitude (~102 iterations instead of
~103). Third, the convergence trend exhibits fluctuations typical of
Anderson accelerated algorithms.
5. Conclusions

The RM is implemented as an iterative scheme that employs an
integral expression to introduce an equivalence between approxi-
mated physical expressions for the current, like using Fick’s law in
the diffusion approximation, and its integral expression from
transport. Such equivalence is established by means of new free
parameters, enabling corrections into the balance equation, either
by letting the diffusion coefficient to change locally through the
iterations, or by introducing new terms, like in the case of adding
drift currents. These corrections are used in a diffusion solver to
obtain more accurate solutions. So far, the RM has only been
developed and implemented using the correction of the net cur-
rents ðRMnetÞ.

In this paper, two new implementations are presented. The first
is the so-called RM partial currents corrections (denoted as RMp),
which applies the correction on the partial currents. Both RMnet

and RMp eliminate the possible division by zero when the flux
gradient tends to zero thanks to the drift-like correction terms. The
RMp follows the pCMFD scheme used to accelerate advanced
transport solvers, and was introduced with the aim of studying
convergence with the implementation schemes based on drift
corrections on the current, thanks to the higher stability reported
by pCMFD. However, both RMnet and RMp never showed non-
convergence problems with Sood’s test cases presented in this
work. The differences observed between the RMnet and RMp in the
criticality and fundamental flux distribution are minor.

The second new implementation is the spatial correction of the
diffusion coefficients ðRMDÞ, close to the original form proposed by
Ronen [1]. This implementation exhibits slightly better accuracy in
predicting the flux distribution near the vacuum boundary
compared to RMnet and RMp. Indeed, the RMD can apply a
correction also to the extrapolation distance used to reproduce zero
incoming current with the vacuum boundary because such dis-
tance is defined as proportional to the diffusion coefficient evalu-
ated at the boundary. This explains somewhat the better agreement
noticed in most cases, and suggests to study further in the future
the closure relation used to reproduce vacuum at the boundary.

The three implementations are tested on 18 benchmark cases
746
provided by Sood [8]. The benchmark suite also includes problems
showing scattering anisotropy, which allowed testing the new
implementation of the current and the source used in the integral
expression for the current. Note that RM can reproduce only
problems with linearly scattering anisotropy because it relies on a
diffusion problemwhere higher fluxmoments cannot be estimated.

As expected and known from the theory, the classic diffusion
solver failed in general to provide precise results for the criticality
eigenvalue and the flux distribution. The standard diffusion’s de-
viations from criticality range from around 160 to 16,000 pcm, and
the flux deviation ranges between 16% for diffusive problems and
83% for non-reflected slab problems.

The results indicate that the three implementations of the RM
achieve significantly better accuracy in this set of problems. The
maximal deviation in criticality is less than ten pcm, and the
maximal deviation in the spatial distribution of the flux is less than
2% on the boundary (and generally ~1%). This deviation trend is
common to both isotropic and linearly-anisotropic problems.

In addition to the reference by Sood, the RM was also verified
against S128 and CPM codes. The RM flux distribution tends to be
slightly closer to CPM than S128, which is attributed to the fact that
both methods employ the same formalism of the integral transport
equation.

Finally, the run times of the RM and the reference codes were
evaluated for two benchmark problems using CPU time with ten
realizations per problem. The RM, which is basically an iterative
sequence of diffusion calculations, shows significantly faster run-
time for one-dimensional, two-group homogeneous and hetero-
geneous problems. On average, the RM is three times faster than
CPM (both calculating the scalar flux) and eight times faster than
S128, which calculates the angular fluxes using the typical sweep
procedure on directions.

The convergence rate of the RM is relatively slow and is signif-
icantly accelerated by the DAAREM algorithm, enabling the RM to
converge within ~102 iterations instead of ~103. The fluctuating
nature of the convergence trend is typical of Anderson accelerated
algorithems applied to fixed-point iterative problem.

Future work will include a more thorough investigation into the
RM’s computational time performances, stability and robustness of
the implementations with respect to alternative formulations
describing the vacuum boundary, and convergence properties of
the RM.
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Appendix A. Collected data from Sood et al. 2003 [8].
Table A2
One-group macroscopic cross sections for critical problems with linearly anisotropic sca

Material n Sf

Pu-239 (a) 2.5 0.266667 0.7
Pu-239 (b) 2.5 0.266667 0.7

Table A3
Two-group macroscopic cross sections for critical problems with isotropic scattering [8]

Material g ng Sf,g S

PU 1 3.10 0.09360 0.00
2 2.93 0.08544 0.01

U-235 1 2.5 0.06192 0.00
2 2.5 0.06912 0.01

ResearchReactor (a) 1 2.5 1.04840 � 10�3 1.00460
2 2.5 5.06320 � 10�2 2.57880

ResearchReactor (b) 1 2.5 8.36 � 10�4 1.104 �
2 2.5 2.9564 � 10�2 2.4069

H2O (a)(refl.) 1 0. 0. 7.4 �
2 0. 0. 1.8564

U-D2O 1 2.5 2.817 � 10�3 8.7078
2 2.5 9.7 � 10�2 2.5180

U-Al 1 0. 0. 2.170 �
2 2.830023 6.0706 � 10�2 3.143 �

Table A4
Two-group macroscopic cross sections for critical problems with linearly anisotropic sca

Material g ng Sf,g Sc,g

ResearchReactor (a) 1 2.5 0.0010484 0.0010046 0.6
2 2.5 0.0506320 0.0257880 0.0

Table A5
Values of the 1-group normalized scalar flux at four spatial positions. The flux is
normalized by the value at the center [8].

Prob. # Li ¼ x/Lc

L1 ¼ 0.25 L2 ¼ 0.5 L3 ¼ 0.75 L4 ¼ 1.0

6 0.97017340 0.88105400 0.73181310 0.49025920
12 0.96695060 0.86862590 0.70552180 0.44619120
22 0.93945236 0.76504084 0.49690627 0.13893858

Prob. # Fe-U U-Fe Fe-Na Na

30 1.229538 1.49712 1.324899 0.91227

Table A1
One-group macroscopic cross sections for critical problems with isotropic scattering [8].

Material n Sf

Pu-239 (a) 3.24 0.08160
Pu-239 (b) 2.84 0.08160
H2O 0.00 0.0
U-235 (a) 2.70 0.065280
U-D2O 1.7 0.054628
H2O (refl) 0.0 0.0
U-235 (e) 2.5 0.06922744
Fe (refl) 0.0 0.0
Na (mod) 0.0 0.0

747
ttering [8].

Ss,0 Ss,1 St c

33333 0.2 1.0 1.4
33333 0.333333 1.0 1.4

.

c,g Ss,g)g0 St,g cg

480 0.07920 0. 0.22080 0.575
440 0.04320 0.23616 0.33600 0.425

384 0.07824 0. 0.21600 0.575
344 0.07200 0.26304 0.34560 0.423

� 10�3 0.625680 0. 0.65696 1.
� 10�2 0.029227 2.44383 2.52025 0.

10�3 0.838920 7.67 � 10�3 0.88721 1.
� 10�2 0.046350 2.91830 2.97270 0.

10�4 0.839750 3.36 � 10�4 0.88798 0.
� 10�2 0.047490 2.9676 2.98650 0.

� 10�3 3.1980 � 10�1 0. 0.33588 1.
� 10�2 4.5552 � 10�3 0.424100 0.54628 0.

10�4 0.247516 0.020432 0.268165 1.
10�3 1.213127 0. 1.276976 0.

ttering [8].

S0
s;g)g0 S1

s;g)g0 St,g cg

25680 0.0 0.2745900 0.0 0.65696 1.0
29227 2.44383 0.0075737 0.83318 2.52025 0.0

Table A6
Values of the two-group normalized scalar flux at four spatial positions. The flux is
normalized by the value of the fast-group flux at the center [8].

Prob. # Group Li ¼ x/Lc

L1 ¼ 0.241394 L2 ¼ 0.502905 L3 ¼ 0.744300 L4 ¼ 1.0

54 1 0.943363 0.761973 0.504012 0.1475980
2 0.340124 0.273056 0.173845 0.0212324

Prob.# Group L1 ¼ 0.2 L2 ¼ 0.5 L3 ¼ 0.8 L4 ¼ 1.0

71 1 0.963873 0.781389 0.472787 0.1895780
2 0.349006 0.280870 0.157376 0.0277639

Ss St c

0.225126 0.3264 0.689724265
0.225126 0.3264 0.689724265
0.293760 0.3264 0.90
0.248064 0.3264 0.76
0.464338 0.546280 0.85
0.491652 0.546280 0.90
0.328042 0.407407 0.805194805

0.232094880 0.232560 0.998
0.086368032 0.086368032 1.0
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