DOI QR코드

DOI QR Code

Evaluation of radiation resistance of an austenitic stainless steel with nanosized carbide precipitates using heavy ion irradiation at 200 dpa

  • Ji Ho Shin (Central Research Institute, Korea Hydro and Nuclear Power Co., Ltd.) ;
  • Byeong Seo Kong (Korea Advanced Institute of Science and Technology) ;
  • Chaewon Jeong (Korea Advanced Institute of Science and Technology) ;
  • Hyun Joon Eom (Korea Advanced Institute of Science and Technology) ;
  • Changheui Jang (Korea Advanced Institute of Science and Technology) ;
  • Lin Shao (Department of Nuclear Engineering, Texas A&M University)
  • 투고 : 2022.06.08
  • 심사 : 2022.09.29
  • 발행 : 2023.02.25

초록

Despite many advantages as structural materials, austenitic stainless steels (SSs) have been avoided in many next generation nuclear systems due to poor void swelling resistance. In this paper, we report the results of heavy ion irradiation to the recently developed advanced radiation resistant austenitic SS (ARES-6P) with nanosized NbC precipitates. Heavy ion irradiation was performed at high temperatures (500 ℃ and 575 ℃) to the damage level of ~200 displacement per atom (dpa). The measured void swelling of ARES-6P was 2-3%, which was considerably less compared to commercial 316 SS and comparable to ferritic martensitic steels. In addition, increment of hardness measured by nano-indentation was much smaller for ARES-6P compared to 316 SS. Though some nanosized NbC precipitates were dissociated under relatively high dose rate (~5.0 × 10-4 dpa/s), sufficient number of NbC precipitates remained to act as sink sites for the point defects, resulting in such superior radiation resistance.

키워드

과제정보

This study was mainly supported by the National Research Foundation (NRF) of the MSIT of the Republic of Korea as an Engineering Research Center (No. 2016R1A5A101391921) and Nuclear R&D Program (2019M1A7A1A0208834412). Authors appreciate POSCO for helping with the manufacturing of ingots and conducting the thermo-mechanical processing. In addition, we are grateful to the staff in the Texas A&M Ion Beam Lab. for heavy ion irradiation experiments.

참고문헌

  1. E.A. Kenik, J.T. Busby, Radiation-induced degradation of stainless steel light water reactor internals, Mater. Sci. Eng. R Rep. 73 (7) (2012) 67-83.  https://doi.org/10.1016/j.mser.2012.05.002
  2. S.J. Zinkle, J.T. Busby, Structural materials for fission & fusion energy, Mater. Today 12 (11) (2009) 12-19. 
  3. K.H. Lo, C.H. Shek, J. Lai, Recent developments in stainless steels, Mater. Sci. Eng. R Rep. 65 (4-6) (2009) 39-104.  https://doi.org/10.1016/j.mser.2009.03.001
  4. S.J. Zinkle, G. Was, Materials challenges in nuclear energy, Acta Mater. 61 (3) (2013) 735-758.  https://doi.org/10.1016/j.actamat.2012.11.004
  5. F. Garner, Irradiation Performance of Cladding and Structural Steels in Liquid Metal Reactors, Materials Science and Technology, 2006. 
  6. D.C. Crawford, D.L. Porter, S.L. Hayes, Fuels for sodium-cooled fast reactors: US perspective, J. Nucl. Mater. 371 (1-3) (2007) 202-231.  https://doi.org/10.1016/j.jnucmat.2007.05.010
  7. F. Garner, M. Toloczko, B. Sencer, Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure, J. Nucl. Mater. 276 (1-3) (2000) 123-142.  https://doi.org/10.1016/S0022-3115(99)00225-1
  8. C. Sun, S. Zheng, C. Wei, Y. Wu, L. Shao, Y. Yang, K. Hartwig, S. Maloy, S. Zinkle, T. Allen, Superior radiation-resistant nanoengineered austenitic 304L stainless steel for applications in extreme radiation environments, Sci. Rep. 5 (1) (2015) 1-7.  https://doi.org/10.1038/srep07801
  9. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, 2016, p. springer. 
  10. P. Maziasz, Temperature dependence of the dislocation microstructure of PCA austenitic stainless steel irradiated in ORR spectrally-tailored experiments, J. Nucl. Mater. 191 (1992) 701-705.  https://doi.org/10.1016/0022-3115(92)90563-Z
  11. R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (8) (2004) 511-516.  https://doi.org/10.1038/nmat1180
  12. E. Lee, L. Mansur, Fee15Nie13Cr austenitic stainless steels for fission and fusion reactor applications. III. Phase stability during heavy ion irradiation, J. Nucl. Mater. 278 (1) (2000) 20-29.  https://doi.org/10.1016/S0022-3115(99)00236-6
  13. C. Solenthaler, M. Ramesh, P.J. Uggowitzer, R. Spolenak, Precipitation strengthening of Nb-stabilized TP347 austenitic steel by a dispersion of secondary Nb(C,N) formed upon a short-term hardening heat treatment, Mater. Sci. Eng A. 647 (2015) 294-302.  https://doi.org/10.1016/j.msea.2015.09.028
  14. J.H. Shin, H.-S. Kim, B.S. Kong, G.O. Subramanian, S. Hong, H.J. Lee, C. Jang, Development of thermo-mechanical processing to form high density of uniformly distributed nanosized carbides in austenitic stainless steels, Mater. Sci. Eng A. 775 (2020), 138986. 
  15. N. Almousa, B. Dacus, K.B. Woller, J.H. Shin, C. Jang, L. Shao, F.A. Garner, A. Gabriel, M.P. Short, On the use of non-destructive, gigahertz ultrasonics to rapidly screen irradiated steels for swelling resistance, Mater. Char. 174 (2021), 111017. 
  16. J.H. Shin, B.S. Kong, C. Jeong, H.J. Eom, C. Jang, N. AlMousa, K.B. Woller, M.P. Short, Swelling resistance of an austenitic stainless steel with uniformly distributed nanosized NbC precipitates under heavy ion irradiation, J. Nucl. Mater. 564 (2022), 153678. 
  17. Y.W. Kim, J.H. Kim, S.-G. Hong, C.S. Lee, Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel, Mater. Sci. Eng A. 605 (2014) 244-252.  https://doi.org/10.1016/j.msea.2014.03.054
  18. A. Deschamps, F. Livet, Y. Brechet, In ꠑ fluence of predeformation on ageing in an Al-Zn-Mg alloy-I. Microstructure evolution and mechanical properties, Acta Mater. 47 (1) (1998) 281-292.  https://doi.org/10.1016/S1359-6454(98)00293-6
  19. H. Kim, J.G. Gigax, J. Fan, F.A. Garner, T.L. Sham, L. Shao, Swelling resistance of advanced austenitic alloy A709 and its comparison with 316 stainless steel at high damage levels, J. Nucl. Mater. 527 (2019), 151818. 
  20. J.G. Gigax, E. Aydogan, T. Chen, D. Chen, L. Shao, Y. Wu, W.Y. Lo, Y. Yang, F.A. Garner, The influence of ion beam rastering on the swelling of self-ion irradiated pure iron at 450 ℃, J. Nucl. Mater. 465 (2015) 343-348.  https://doi.org/10.1016/j.jnucmat.2015.05.025
  21. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 310 (2013) 75-80.  https://doi.org/10.1016/j.nimb.2013.05.008
  22. T. Malis, S.C. Cheng, R.F. Egerton, EELS log-ratio technique for specimenthickness measurement in the TEM, J. Electron. Microsc. Tech. 8 (2) (1988) 193-200.  https://doi.org/10.1002/jemt.1060080206
  23. Z. Fan, T.-n. Yang, B. Kombaiah, X. Wang, P.D. Edmondson, Y.N. Osetsky, K. Jin, C. Lu, H. Bei, L. Wang, From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy, Materialia 9 (2020), 100603. 
  24. P. Hosemann, D. Kiener, Y. Wang, S.A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials, J. Nucl. Mater. 425 (1) (2012) 136-139.  https://doi.org/10.1016/j.jnucmat.2011.11.070
  25. K.S. Mao, C. Sun, Y. Huang, C.-H. Shiau, F.A. Garner, P.D. Freyer, J.P. Wharry, Grain orientation dependence of nanoindentation and deformation-induced martensitic phase transformation in neutron irradiated AISI 304L stainless steel, Materialia 5 (2019), 100208. 
  26. J. Gupta, J. Hure, B. Tanguy, L. Laffont, M.C. Lafont, E. Andrieu, Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons, J. Nucl. Mater. 501 (2018) 45-58.  https://doi.org/10.1016/j.jnucmat.2018.01.013
  27. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (6) (2011) 1564-1583.  https://doi.org/10.1557/JMR.1992.1564
  28. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solid. 46 (3) (1998) 411-425.  https://doi.org/10.1016/S0022-5096(97)00086-0
  29. Z. Hu, L. Shao, Effect of carbon on void swelling in Fe, in: 14th International Topical Meeting on Nuclear Applications of Accelerators, AccApp., 2021. 
  30. A. Bhattacharya, S.J. Zinkle, Cavity Swelling in Irradiated Materials, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2020. 
  31. L. Mansur, Theory and experimental background on dimensional changes in irradiated alloys, J. Nucl. Mater. 216 (1994) 97-123.  https://doi.org/10.1016/0022-3115(94)90009-4
  32. L. Mansur, Correlation of neutron and heavy-ion damage: II. The predicted temperature shift if swelling with changes in radiation dose rate, J. Nucl. Mater. 78 (1) (1978) 156-160.  https://doi.org/10.1016/0022-3115(78)90514-7
  33. S.N. Votinov, V.I. Prokhorov, Z.E. Ostrovsky, Irradiated Stainless Steels, Nauka publ., 1987, p. 128. 
  34. A. Kalchenko, V. Bryk, N. Lazarev, I. Neklyudov, V. Voyevodin, F. Garner, Prediction of swelling of 18Cr10NiTi austenitic steel over a wide range of displacement rates, J. Nucl. Mater. 399 (1) (2010) 114-121.  https://doi.org/10.1016/j.jnucmat.2010.01.010
  35. A. Kalchenko, V. Bryk, N. Lazarev, V. Voyevodin, F. Garner, Prediction of void swelling in the baffle ring of WWER-1000 reactors for service life of 30-60 years, J. Nucl. Mater. 437 (1-3) (2013) 415-423.  https://doi.org/10.1016/j.jnucmat.2013.02.010
  36. J.-L. Seran, M. Le Flem, Irradiation-resistant Austenitic Steels as Core Materials for Generation IV Nuclear Reactors, Structural Materials for Generation IV Nuclear Reactors, Elsevier 2017, pp. 285-328. 
  37. P. Song, A. Kimura, K. Yabuuchi, P. Dou, H. Watanabe, J. Gao, Y.-J. Huang, Assessment of phase stability of oxide particles in different types of 15Cr-ODS ferritic steels under 6.4 MeV Fe ion irradiation at 200 ℃, J. Nucl. Mater. 529 (2020), 151953. 
  38. C. Lu, Z. Lu, X. Wang, R. Xie, Z. Li, M. Higgins, C. Liu, F. Gao, L. Wang, Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation, Sci. Rep. 7 (1) (2017) 1-7.  https://doi.org/10.1038/s41598-016-0028-x
  39. N. Cautaerts, R. Delville, E. Stergar, D. Schryvers, M. Verwerft, Characterization of (Ti, Mo, Cr) C nanoprecipitates in an austenitic stainless steel on the atomic scale, Acta Mater. 164 (2019) 90-98.  https://doi.org/10.1016/j.actamat.2018.10.018
  40. Y. Chen, Y. Yang, Y. Huang, T. Allen, B. Alexandreanu, K. Natesan, Void Swelling and Microstructure of Austenitic Stainless Steels Irradiated in the BOR-60 Reactor, Argonne National Lab.(ANL), Argonne, IL (United States), 2012. 
  41. R.E. Stoller, A.V. Barashev, S.I. Golubov, Swelling in Light Water Reactor Internal Components: Insights from Computational Modeling, ORNL/LTR-2015/439, Oak Ridge National Laboratory, 2015. 
  42. G.R. Odette, On the status and prospects for nanostructured ferritic alloys for nuclear fission and fusion application with emphasis on the underlying science, Scripta Mater. 143 (2018) 142-148.  https://doi.org/10.1016/j.scriptamat.2017.06.021
  43. Y. Yazawa, T. Furuhara, T. Maki, Effect of matrix recrystallization on morphology, crystallography and coarsening behavior of vanadium carbide in austenite, Acta Mater. 52 (12) (2004) 3727-3736.  https://doi.org/10.1016/j.actamat.2004.04.027
  44. J.H. Shin, H.-S. Kim, B.S. Kong, G. Obulan Subramanian, S. Hong, H.J. Lee, C. Jang, Development of thermo-mechanical processing to form high density of uniformly distributed nanosized carbides in austenitic stainless steels, Mater. Sci. Eng A. 775 (2020), 138986. 
  45. E.A. Marquis, J.M. Hyde, D.W. Saxey, S. Lozano-Perez, V. de Castro, D. Hudson, C.A. Williams, S. Humphry-Baker, G.D. Smith, Nuclear reactor materials at the atomic scale, Mater. Today 12 (11) (2009) 30-37.  https://doi.org/10.1016/S1369-7021(09)70296-2
  46. A. Hirata, T. Fujita, Y. Wen, J. Schneibel, C.T. Liu, M. Chen, Atomic structure of nanoclusters in oxide-dispersion-strengthened steels, Nat. Mater. 10 (12) (2011) 922-926.  https://doi.org/10.1038/nmat3150
  47. C. David, B.K. Panigrahi, S. Balaji, A.K. Balamurugan, K.G.M. Nair, G. Amarendra, C.S. Sundar, B. Raj, A study of the effect of titanium on the void swelling behavior of D9 steels by ion beam simulation, J. Nucl. Mater. 383 (1) (2008) 132-136.  https://doi.org/10.1016/j.jnucmat.2008.08.049
  48. F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater. 9 (1) (2008), 013002. 
  49. B. Rouxel, C. Bisor, Y. De Carlan, A. Courcelle, A. Legris, Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation, EPJ Nuclear Sci. Technol. 2 (2016). 
  50. K. Nordlund, F. Djurabekova, Multiscale modelling of irradiation in nano-structures, J. Comput. Electron. 13 (1) (2014) 122-141.  https://doi.org/10.1007/s10825-013-0542-z
  51. R. Rajaraman, P. Gopalan, B. Viswanathan, S. Venkadesan, A positron annihilation study of TiC precipitation in plastically deformed austenitic stainless steel, J. Nucl. Mater. 217 (3) (1994) 325-328.  https://doi.org/10.1016/0022-3115(94)90383-2
  52. M. Nastar, L.T. Belkacemi, E. Meslin, M. Loyer-Prost, Thermodynamic model for lattice point defect-mediated semi-coherent precipitation in alloys, Communications Materials 2 (1) (2021) 1-11.  https://doi.org/10.1038/s43246-021-00136-z
  53. B. Rouxel, C. Bisor, Y. De Carlan, A. Courcelle, A. Legris, Influence of the austenitic stainless steel microstructure on the void swelling under ion irradiation, EPJ Nuclear Sci. Technol. 2 (2016) 30. 
  54. P. Changizian, Z. Yao, C. Lu, F. Long, M.R. Daymond, Radiation effect on nano-indentation properties and deformation mechanisms of a Ni-based superalloy X-750, J. Nucl. Mater. 515 (2019) 1-13.  https://doi.org/10.1016/j.jnucmat.2018.11.040
  55. J. Gan, G.S. Was, Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with rotons: comparison with neutron-irradiated microstructures, J. Nucl. Mater. 297 (2) (2001) 161-175.  https://doi.org/10.1016/S0022-3115(01)00615-8
  56. F. Kroupa, P.B. Hirsch, Elastic interaction between prismatic dislocation loops and straight dislocations, Discuss. Faraday Soc. 38 (1964) 49-55.  https://doi.org/10.1039/df9643800049
  57. C. Sun, K.Y. Yu, J.H. Lee, Y. Liu, H. Wang, L. Shao, S.A. Maloy, K.T. Hartwig, X. Zhang, Enhanced radiation tolerance of ultrafine grained Fe-Cr-Ni alloy, J. Nucl. Mater. 420 (1-3) (2012) 235-240.  https://doi.org/10.1016/j.jnucmat.2011.10.001
  58. J.H. Shin, B.S. Kong, H.J. Eom, C. Jang, H. Do, D. Jang, Dynamic evolution of nanosized NbC precipitates in austenite matrix during deformation and its contribution to strengthening, Mater. Sci. Eng A. 806 (2021), 140816. 
  59. J.T. Busby, M.C. Hash, G.S. Was, The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, J. Nucl. Mater. 336 (2-3) (2005) 267-278.  https://doi.org/10.1016/j.jnucmat.2004.09.024
  60. A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, P. Hosemann, Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction, J. Nucl. Mater. 458 (2015) 70-76.  https://doi.org/10.1016/j.jnucmat.2014.11.050
  61. A. International, Standard Test Method for Brinell Hardness of Metallic Materials, ASTM International 2012. 
  62. F. Mompiou, M. Legros, A. Sedlmayr, D.S. Gianola, D. Caillard, O. Kraft, Source-based strengthening of sub-micrometer Al fibers, Acta Mater. 60 (3) (2012) 977-983.  https://doi.org/10.1016/j.actamat.2011.11.005
  63. B. Girault, A.S. Schneider, C.P. Frick, E. Arzt, Strength effects in micropillars of a dispersion strengthened superalloy, Adv. Eng. Mater. 12 (5) (2010) 385-388. https://doi.org/10.1002/adem.201000089