DOI QR코드

DOI QR Code

Fatigue life curves of alloy 617 in the temperature range of 800-950℃

  • Received : 2022.07.03
  • Accepted : 2022.09.26
  • Published : 2023.02.25

Abstract

The cyclical behavior of Alloy 617 was examined at 25 ℃ and high temperatures of 800, 850, 900, and 950 ℃ in air to obtain its fatigue life curves. The specimens tested at 25, 800, and 850 ℃ cyclically hardened, whereas those tested above 900 ℃ cyclically softened from the first cycle, that is, their fatigue life was reduced at high temperatures owing to loss of strength. Parameters of the typical Coffin-Manson-Basquin relationship were determined for each test temperature. Interestingly, no significant difference in fatigue life was observed for the specimens tested in the range of 800-950 ℃. Owing to the similarity in fatigue life, we determined fatigue strength and fatigue ductility exponents that could be applied for this temperature range. The parameters obtained were close to the universal slopes, although the fatigue ductility exponent was slightly different. The proposed fatigue life curves were compared with those presented in ASME code.

Keywords

Acknowledgement

This research was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT & Future Planning (2020M2D4A2068407).

References

  1. J.P. Strizak, C.R. Brinkman, P.L. Rittenhouse, High-temperature Low-Cycle Fatigue and Tensile Properties of Hastelloy X and Alloy 617 in Air and HTGR-Helium, Oak Ridge National Laboratory, 1981. CONF-810530-4.
  2. J.P. Strizak, C.R. Brinkman, M.K. Booker, P.L. Rittenhouse, The Influence of Temperature, Environment, and Thermal Aging on the Continuous Cycle Fatigue Behavior of Hastelloy X and Inconel 617, Oak Ridge National Laboratory, 1982. ORNL/TM-8130.
  3. H. Hattori, M. Kitagawa, A. Ohtomo, Effect of grain size on high temperature low-cycle fatigue properties of Inconel 617, J. Iron Steel Inst. Jpn. 68 (16) (1982) 2521-2530. https://doi.org/10.2355/tetsutohagane1955.68.16_2521
  4. H.-P. Meurer, G.K.H. Gnirss, W. Mergler, G. Raule, H. Schuster, G. Ullrich, Investigations on the fatigue behavior of high-temperature alloys for high-temperature gas-cooled reactor components, Nucl. Technol. 66 (1984) 315-323. https://doi.org/10.13182/NT84-A33435
  5. M.A. Burke, C.G. Beck, The high temperature low cycle fatigue behavior of the nickel base alloy IN-617, Metall. Trans. A 15 (1984) 661-670. https://doi.org/10.1007/BF02644197
  6. H. Hattori, M. Kitagawa, A. Ohtomo, Effect of temperature on low-cycle fatigue properties of Ni-base superalloys for HTGR, J. Iron Steel Inst. Jpn. 73 (3) (1987) 536-543. https://doi.org/10.2355/tetsutohagane1955.73.3_536
  7. K.B.S. Rao, H. Schiffers, H. Schuster, H. Nickel, Influence of time and temperature dependent processes on strain controlled low cycle fatigue behavior of Alloy 617, Metall. Trans. A 19 (1988) 359-371. https://doi.org/10.1007/BF02652546
  8. K.B.S. Rao, H.-P. Meurer, H. Schuster, Creep-fatigue interaction of Inconel 617 at 950 ℃ in simulated nuclear reactor helium, Mater. Sci. Eng., A 104 (1988) 37-51. https://doi.org/10.1016/0025-5416(88)90404-1
  9. K.-H. Lang, D. Eifer, E. Macherauch, Fatigue behaviour of Ni-base alloys up to 1273 K, in: Proceeding of the 8th International Conference on the Strength of Metals and Alloys vol. 2, 1988, pp. 701-706. Tampere, Finland.
  10. G.D. Smith, D.H. Yates, Optimization of the fatigue properties on inconel alloy 617, in: Proceeding of the ASME 1991 International Gas Turbine and Aero-engine Congress and Exposition June, 1991, pp. 3-6. Orlando, Florida, USA.
  11. Z.K. Lu, G.J. Weng, A simple unified theory for the cyclic deformation of metals at high temperature, Acta Mech. 118 (1996) 135-149. https://doi.org/10.1007/BF01410513
  12. J.K. Benz, R.N. Wright, Fatigue and Creep Crack Propagation Behaviour of Alloy 617 in the Annealed and Aged Conditions, Idaho National Laboratory, 2013. INL/CON-13-30214.
  13. S. Quayyum, M. Sengupta, G. Choi, C.J. Lissenden, T. Hassan, Fatigue and ratcheting experimental responses of Alloy 617 under high temperature multiaxial loading, in: Proceeding of the ASME 2013 Pressure Vessels and Piping Conference July, 2013, pp. 14-18. Paris, France.
  14. L. Carroll, M. Carroll, Creep-fatigue Behavior of Alloy 617 at 850 and 950 ℃, Idaho National Laboratory, 2013. INL/CON-13-28886 Revision 1.
  15. C. Cabet, L. Carroll, R. Wright, Low cycle fatigue and creep-fatigue behavior of Alloy 617 at high temperature, J. Pressure Vessel Technol. 135 (6) (2013), 061401.
  16. L.J. Carroll, C. Cabet, M.C. Carroll, R.N. Wright, The development of microstructural damage during high temperature creep-fatigue of a nickel alloy, Int. J. Fatig. 47 (2013) 115-125. https://doi.org/10.1016/j.ijfatigue.2012.07.016
  17. L. Ma, S.K. Roy, Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature, J. Nucl. Mater. 435 (13) (2013) 88-95. https://doi.org/10.1016/j.jnucmat.2012.12.015
  18. G. Maier, H. Riedel, C. Somsen, Cyclic deformation and lifetime of Alloy 617B during isothermal low cycle fatigue, Int. J. Fatig. 55 (2013) 126-135. https://doi.org/10.1016/j.ijfatigue.2013.06.001
  19. J.K. Wright, L.J. Caroll, J.A. Simpson, R.N. Wright, Low cycle fatigue of Alloy 617 at 850 ℃ and 950 ℃, J. Eng. Mater. Technol. 135 (2013), 031005.
  20. Y. Wang, R.I. Jetter, T.-L. Sham, Application of Combined Sustained and Cyclic Loading Test Results to Alloy 617 Elevated Temperature Design Criteria, Oak Ridge National Laboratory, 2014. ORNL/TM-2014/294.
  21. S. Quayyum, P.G. Pritchard, T. Hassan, High temperature constitutive model development for Alloy 617, in: Proceeding of the ASME Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries March, 2014, pp. 25-27. Seattle, Washington, USA.
  22. X. Chen, Z. Yang, M.A. Sokolov, D.L.E. III, K. Mo, J.F. Stubbins, Effect of creep and oxidation on reduced fatigue life of Ni-based alloy 617 at 850 ℃, J. Nucl. Mater. 444 (13) (2014) 393-403. https://doi.org/10.1016/j.jnucmat.2013.09.030
  23. S.J. Kim, R.T. Dewa, W.G. Kim, M.H. Kim, Cyclic stress response and fracture behaviors of Alloy 617 base metal and weld joints under LCF loading, Adv. Mater. Sci. Eng. 2015 (2015), 207497.
  24. K. Mariappan, V. Shankar, S. Goyal, R. Sandhya, K. Laha, A.K. Bhaduri, Strain amplitude and temperature effects on the low cycle fatigue behavior of Alloy 617M, Trans. Indian Inst. Met. 69 (2016) 325-329. https://doi.org/10.1007/s12666-015-0784-5
  25. R.T. Dewa, S.J. Kim, W.G. Kim, E.S. Kim, Understanding low cycle fatigue behavior of Alloy 617 base metal and weldments at 900 ℃, Metals 6 (2016) 178.
  26. R.T. Dewa, S.J. Kim, W.G. Kim, E.S. Kim Es, Low cycle fatigue behaviors of Alloy 617 (Inconel 617) weldments for high temperature applications, Metals 6 (2016) 100.
  27. V. Shankar, A. Kumar, K. Mariappan, R. Sandhya, K. Laha, A.K. Bhaduri, N. Narasaiah, Occurrence of dynamic strain aging in Alloy 617M under low cycle fatigue loading, Int. J. Fatig. 100 (1) (2017) 12-20. https://doi.org/10.1016/j.ijfatigue.2017.03.001
  28. R.T. Dewa, S.J. Kim, W.G. Kim, E.S. Kim, Effect of strain range on the low cycle fatigue in Alloy 617 at high temperature, Metals 7 (2017) 54.
  29. S. Guth, K.-H. Lang, An approach to lifetime prediction for a wrought Ni-base alloy under thermo-mechanical fatigue with various phase angles between temperature and mechanical strain, Int. J. Fatig. 99 (2) (2017) 286-294. https://doi.org/10.1016/j.ijfatigue.2016.10.015
  30. R.T. Dewa, J.-H. Park, S.-J. Kim,W.-G. Kim, E.-S. Kim, G.D. Haryadi, I.M.W. Ekaputra, A review of low-cycle fatigue of Alloy 617 for use in VHTR components: experimental outlook, in: Proceeding of the 2nd International Joint Conference on Advanced Engineering and Technology and International Symposium on Advanced Mechanical and Power Engineering vol. 159, 2018, 02049.
  31. R.T. Dewa, S.-J. Kim, W.-G. Kim, E.-S. Kim, Evaluation of the low cycle fatigue properties of GTAW weldments of Alloy 617 at 950 ℃, Eng. Fail. Anal. 90 (2018) 202-214. https://doi.org/10.1016/j.engfailanal.2018.03.017
  32. A.K. Karnati, A. Sarkar, A. Nagesha, P. Parameswaran, R. Sandhya, N. Narasaiah, Evaluation of high cycle fatigue behaviour of alloy 617M at 973 K: Haigh diagram and associated mechanisms, Int. J. Pres. Ves. Pip. 172 (2019) 304-312. https://doi.org/10.1016/j.ijpvp.2019.03.021
  33. C.V. Rao, N.C.S. Srinivas, G.V.S. Sastry, V. Singh, Low cycle fatigue, deformation and fracture behaviour of Inconel 617 alloy, Mater. Sci. Eng., A 765 (2019), 138286.
  34. J. Veerababu, R. Kannan, S. Goyal, A. Nagesha, Low cycle fatigue behavior of forged Alloy 617M, Trans. Indian Natl. Acad. Eng. 7 (2022) 417-424. https://doi.org/10.1007/s41403-021-00292-1
  35. G.V.S.N. Rao, P.A. Kumar, R. Kannan, A. Nagesha, Influence of temperature and strain amplitude on low cycle fatigue and creep-fatigue interaction behaviour of Alloy 617M, Trans. Indian Natl. Acad. Eng. 7 (2022) 509-517. https://doi.org/10.1007/s41403-022-00325-3
  36. A.K. Roy, V. Marthandam, Mechanism of yield strength anomaly of Alloy 617, Mater. Sci. Eng., A 517 (12) (2009) 276-280. https://doi.org/10.1016/j.msea.2009.03.090
  37. K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, J.F. Stubbins, Mechanism of plastic deformation of a Ni-based superalloy for VHTR applications, J. Nucl. Mater. 441 (13) (2013) 695-703. https://doi.org/10.1016/j.jnucmat.2013.03.083
  38. D. Kaoumi, K. Hrutkay, Tensile deformation behavior and microstructure evolution of Ni-based superalloy 617, J. Nucl. Mater. 454 (13) (2014) 265-273. https://doi.org/10.1016/j.jnucmat.2014.08.003
  39. I.M.W. Ekaputra, W.-G. Kim, J.-Y. Park, S.-J. Kim, E.-S. Kim, Influence of dynamic strain aging on tensile deformation behavior of Alloy 617, Nucl. Eng. Technol. 48 (6) (2016) 1387-1395. https://doi.org/10.1016/j.net.2016.06.013
  40. C.V. Rao, N.C.S. Srinivas, G.V.S. Sastry, V. Singh, Dynamic strain aging, deformation and fracture behaviour of the nickel base superalloy Inconel 617, Mater. Sci. Eng., A 742 (2019) 44-60. https://doi.org/10.1016/j.msea.2018.10.123
  41. I. Sah, J.-B. Hwang, W.-G. Kim, E.-S. Kim, M.-H. Kim, High-temperature mechanical behaviors of diffusion-welded Alloy 617, Nucl. Eng. Des. 364 (2020), 110617.
  42. I. Sah, E.-S. Kim, Enhanced joint integrity of diffusion-welded Alloy 617 by controlling the micro-chemistry near the surface, Mater. Today Commun. 29 (2021), 102770.
  43. O.H. Basquin, The exponential law of endurance tests, Proc. of Am. Soc. Test. Mater. 10 (1910) 625-630.
  44. L.F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal, Trans. Am. Soc. Mech. Eng. 76 (1954) 931-950. https://doi.org/10.1115/1.4015020
  45. S.S. Manson, Behavior of Materials under Conditions of Thermal Stress, National Advisory Committee for Aeronautics, 1953. Technical Note 2933.
  46. S. Yukawa, Elevated temperature fatigue design curves for Ni-Cr-Co-Mo Alloy 617, in: Proceeding of JSME/ASME Joint International Conference on Nuclear Engineering, 1991, pp. 655-660. Tokyo, Japan.
  47. S.S. Manson, Fatigue: a Complex Subject e Some Simple Approximations, National Aeronautics and Space Administration, 1964. NASA TM X-52084.
  48. R.N. Wright, Updated Draft ASME Boiler and Pressure Vessel Code Case for Use of Alloy 617 for Construction of Nuclear Components for Section III, Division 5, Idaho National Laboratory, 2018. INL/EXT-17-42999 Revision 1.
  49. W.L. Mankins, J.C. Hosier, T.H. Bassford, Microstructure and phase stability of inconel alloy 617, Metall. Trans. B 5 (1974) 2579-2590. https://doi.org/10.1007/BF02643879
  50. J. Benz, T. Lillo, R. Wright, Aging of Alloy 617 at 650 and 750 ℃, Idaho National Laboratory, 2013. INL/EXT-12-27974.
  51. E. Gariboldi, M. Cabibbo, S. Spigarelli, D. Ripamonti, Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature, Int. J. Pres. Ves. Pip. 85 (12) (2008) 63-71. https://doi.org/10.1016/j.ijpvp.2007.06.014
  52. O.F. Kimball, G.Y. Lai, G.H. Reynolds, Effects of thermal aging on the microstructure and mechanical properties of a commercial Ni-Cr-Co-Mo alloy (Inconel 617), Metall. Trans. A 7 (1976) 1951-1952. https://doi.org/10.1007/BF02659828
  53. Z. Wang, O. Muransky, H. Zhu, T. Wei, A. Sokolova, K. Short, R.N. Wright, On the kinetics of gamma prime (γ') precipitation and its strengthening mechanism in Alloy 617 during a long-term thermal aging, Materialia 11 (2020), 100682.