DOI QR코드

DOI QR Code

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim (Department of Radiology, Konkuk University Medical Center) ;
  • Subin Lee (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Jin Ho Yang (Department of Radiology, Konkuk University Medical Center) ;
  • Yeonsil Moon (Department of Neurology, Konkuk University Medical Center) ;
  • Jongho Lee (Laboratory for Imaging Science and Technology, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Won-Jin Moon (Department of Radiology, Konkuk University Medical Center)
  • 투고 : 2023.03.10
  • 심사 : 2023.08.22
  • 발행 : 2023.11.01

초록

Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.

키워드

과제정보

The authors thank Hee Jin Kim, MD, PhD, from Hanyang University, Chung-Hwan Kang, RT, Ha-young Kim, BS, Suji Kim, RN, from Konkuk University Medical Center for their support in the patient recruitment, imaging data acquisition and management of this study.

참고문헌

  1. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014;13:1045-1060  https://doi.org/10.1016/S1474-4422(14)70117-6
  2. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, et al. Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 2009;252:165-172  https://doi.org/10.1148/radiol.2522081399
  3. Buijs M, Doan NT, van Rooden S, Versluis MJ, van Lew B, Milles J, et al. In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-tesla T2*-weighted phase imaging. Neurobiol Aging 2017;53:20-26  https://doi.org/10.1016/j.neurobiolaging.2016.09.005
  4. Lane DJR, Ayton S, Bush AI. Iron and Alzheimer's disease: an update on emerging mechanisms. J Alzheimers Dis 2018;64(S1):S379-S395  https://doi.org/10.3233/JAD-179944
  5. McCarthy RC, Sosa JC, Gardeck AM, Baez AS, Lee CH, Wessling-Resnick M. Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem 2018;293:7853-7863  https://doi.org/10.1074/jbc.RA118.001949
  6. Ropele S, Wattjes MP, Langkammer C, Kilsdonk ID, Graaf WL, Frederiksen JL, et al. Multicenter R2* mapping in the healthy brain. Magn Reson Med 2014;71:1103-1107  https://doi.org/10.1002/mrm.24772
  7. Moon Y, Han SH, Moon WJ. Patterns of brain iron accumulation in vascular dementia and Alzheimer's dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis 2016;51:737-745  https://doi.org/10.3233/JAD-151037
  8. Cogswell PM, Wiste HJ, Senjem ML, Gunter JL, Weigand SD, Schwarz CG, et al. Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers. Neuroimage 2021;224:117433 
  9. Yim Y, Choi JD, Cho JH, Moon Y, Han SH, Moon WJ. Magnetic susceptibility in the deep gray matter may be modulated by apolipoprotein E4 and age with regional predilections: a quantitative susceptibility mapping study. Neuroradiology 2022;64:1331-1342  https://doi.org/10.1007/s00234-021-02859-9
  10. van Duijn S, Bulk M, van Duinen SG, Nabuurs RJA, van Buchem MA, van der Weerd L, et al. Cortical iron reflects severity of Alzheimer's disease. J Alzheimers Dis 2017;60:1533-1545  https://doi.org/10.3233/JAD-161143
  11. Spotorno N, Acosta-Cabronero J, Stomrud E, Lampinen B, Strandberg OT, van Westen D, et al. Relationship between cortical iron and tau aggregation in Alzheimer's disease. Brain 2020;143:1341-1349  https://doi.org/10.1093/brain/awaa089
  12. Damulina A, Pirpamer L, Soellradl M, Sackl M, Tinauer C, Hofer E, et al. Cross-sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3-T MRI. Radiology 2020;296:619-626  https://doi.org/10.1148/radiol.2020192541
  13. Ayton S, Fazlollahi A, Bourgeat P, Raniga P, Ng A, Lim YY, et al. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 2017;140:2112-2119  https://doi.org/10.1093/brain/awx137
  14. Ayton S, Wang Y, Diouf I, Schneider JA, Brockman J, Morris MC, et al. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 2020;25:2932-2941  https://doi.org/10.1038/s41380-019-0375-7
  15. Yoon J, Gong E, Chatnuntawech I, Bilgic B, Lee J, Jung W, et al. Quantitative susceptibility mapping using deep neural network: QSMnet. Neuroimage 2018;179:199-206  https://doi.org/10.1016/j.neuroimage.2018.06.030
  16. Jung W, Yoon J, Ji S, Choi JY, Kim JM, Nam Y, et al. Exploring linearity of deep neural network trained QSM: QSMnet. Neuroimage 2020;211:116619 
  17. Yang J, Lee S, Moon Y, Lee J, Moon WJ. Relationship between cortical iron and diabetes mellitus in older adults with cognitive complaints: a quantitative susceptibility map study. Investig Magn Reson Imaging 2023;27:84-92  https://doi.org/10.13104/imri.2023.0002
  18. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303-308  https://doi.org/10.1001/archneur.56.3.303
  19. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269  https://doi.org/10.1016/j.jalz.2011.03.005
  20. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:270-279  https://doi.org/10.1016/j.jalz.2011.03.008
  21. Moon Y, Lim C, Kim Y, Moon WJ. Sex-related differences in regional blood-brain barrier integrity in non-demented elderly subjects. Int J Mol Sci 2021;22:2860 
  22. Park M, Moon WJ, Moon Y, Choi JW, Han SH, Wang Y. Region-specific susceptibility change in cognitively impaired patients with diabetes mellitus. PLoS One 2018;13:e0205797 
  23. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838  https://doi.org/10.1016/S1474-4422(13)70124-8
  24. Klein A, Tourville J. 101 labeled brain images and a consistent human cortical labeling protocol. Front Neurosci 2012;6:171 
  25. Nordenskjold R, Malmberg F, Larsson EM, Simmons A, Ahlstrom H, Johansson L, et al. Intracranial volume normalization methods: considerations when investigating gender differences in regional brain volume. Psychiatry Res 2015;231:227-235  https://doi.org/10.1016/j.pscychresns.2014.11.011
  26. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp 2002;17:143-155  https://doi.org/10.1002/hbm.10062
  27. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 2011;55:1645-1656  https://doi.org/10.1016/j.neuroimage.2010.11.088
  28. Wu B, Li W, Avram AV, Gho SM, Liu C. Fast and tissue-optimized mapping of magnetic susceptibility and T2* with multi-echo and multi-shot spirals. Neuroimage 2012;59:297-305  https://doi.org/10.1016/j.neuroimage.2011.07.019
  29. Kim HG, Park S, Rhee HY, Lee KM, Ryu CW, Rhee SJ, et al. Quantitative susceptibility mapping to evaluate the early stage of Alzheimer's disease. Neuroimage Clin 2017;16:429-438  https://doi.org/10.1016/j.nicl.2017.08.019
  30. van Rooden S, Versluis MJ, Liem MK, Milles J, Maier AB, Oleksik AM, et al. Cortical phase changes in Alzheimer's disease at 7T MRI: a novel imaging marker. Alzheimers Dement 2014;10:e19-e26  https://doi.org/10.1016/j.jalz.2013.02.002
  31. Thal DR, Rub U, Orantes M, Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002;58:1791-1800  https://doi.org/10.1212/WNL.58.12.1791
  32. Thal DR, Beach TG, Zanette M, Lilja J, Heurling K, Chakrabarty A, et al. Estimation of amyloid distribution by [18F]flutemetamol PET predicts the neuropathological phase of amyloid β-protein deposition. Acta Neuropathol 2018;136:557-567  https://doi.org/10.1007/s00401-018-1897-9
  33. Collij LE, Heeman F, Salvado G, Ingala S, Altomare D, de Wilde A, et al. Multitracer model for staging cortical amyloid deposition using PET imaging. Neurology 2020;95:e1538-e1553  https://doi.org/10.1212/WNL.0000000000010256
  34. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006;112:389-404  https://doi.org/10.1007/s00401-006-0127-z
  35. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 2004;101:4637-4642  https://doi.org/10.1073/pnas.0308627101
  36. He X, Qin W, Liu Y, Zhang X, Duan Y, Song J, et al. Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer's disease. Hum Brain Mapp 2014;35:3446-3464  https://doi.org/10.1002/hbm.22414
  37. Rosenberg PB, Nowrangi MA, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer's disease: what might be associated brain circuits? Mol Aspects Med 2015;43-44:25-37  https://doi.org/10.1016/j.mam.2015.05.005
  38. Moon Y, Moon WJ, Kim H, Han SH. Regional atrophy of the insular cortex is associated with neuropsychiatric symptoms in Alzheimer's disease patients. Eur Neurol 2014;71:223-229  https://doi.org/10.1159/000356343
  39. You SC, Walsh CM, Chiodo LA, Ketelle R, Miller BL, Kramer JH. Neuropsychiatric symptoms predict functional status in Alzheimer's disease. J Alzheimers Dis 2015;48:863-869  https://doi.org/10.3233/JAD-150018
  40. Sun W, Ueno D, Narumoto J. Brain neural underpinnings of interoception and decision-making in Alzheimer's disease: a narrative review. Front Neurosci 2022;16:946136 
  41. Kumar A, Fontana IC, Nordberg A. Reactive astrogliosis: a friend or foe in the pathogenesis of Alzheimer's disease. J Neurochem 2023;164:309-324  https://doi.org/10.1111/jnc.15565
  42. Marutle A, Gillberg PG, Bergfors A, Yu W, Ni R, Nennesmo I, et al. (3)H-deprenyl and (3)H-PIB autoradiography show different laminar distributions of astroglia and fibrillar β-amyloid in Alzheimer brain. J Neuroinflammation 2013;10:90 
  43. van Bergen JMG, Li X, Quevenco FC, Gietl AF, Treyer V, Meyer R, et al. Simultaneous quantitative susceptibility mapping and flutemetamol-PET suggests local correlation of iron and β-amyloid as an indicator of cognitive performance at high age. Neuroimage 2018;174:308-316  https://doi.org/10.1016/j.neuroimage.2018.03.021
  44. Bulk M, van der Weerd L, Breimer W, Lebedev N, Webb A, Goeman JJ, et al. Quantitative comparison of different iron forms in the temporal cortex of Alzheimer patients and control subjects. Sci Rep 2018;8:6898 
  45. Gong NJ, Dibb R, Bulk M, van der Weerd L, Liu C. Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI. Neuroimage 2019;191:176-185  https://doi.org/10.1016/j.neuroimage.2019.02.019
  46. McIntosh A, Mela V, Harty C, Minogue AM, Costello DA, Kerskens C, et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol 2019;29:606-621  https://doi.org/10.1111/bpa.12704
  47. Joseph-Mathurin N, Dorieux O, Trouche SG, Boutajangout A, Kraska A, Fontes P, et al. Amyloid beta immunization worsens iron deposits in the choroid plexus and cerebral microbleeds. Neurobiol Aging 2013;34:2613-2622 https://doi.org/10.1016/j.neurobiolaging.2013.05.013