DOI QR코드

DOI QR Code

Overcoming the Challenges in the Development and Implementation of Artificial Intelligence in Radiology: A Comprehensive Review of Solutions Beyond Supervised Learning

  • Gil-Sun Hong (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Miso Jang (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sunggu Kyung (Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kyungjin Cho (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jiheon Jeong (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Grace Yoojin Lee (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Keewon Shin (Laboratory for Biosignal Analysis and Perioperative Outcome Research, Biomedical Engineering Center, Asan Institute of Lifesciences, Asan Medical Center) ;
  • Ki Duk Kim (Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Seung Min Ryu (Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Joon Beom Seo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Sang Min Lee (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Namkug Kim (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2023.04.27
  • Accepted : 2023.07.30
  • Published : 2023.11.01

Abstract

Artificial intelligence (AI) in radiology is a rapidly developing field with several prospective clinical studies demonstrating its benefits in clinical practice. In 2022, the Korean Society of Radiology held a forum to discuss the challenges and drawbacks in AI development and implementation. Various barriers hinder the successful application and widespread adoption of AI in radiology, such as limited annotated data, data privacy and security, data heterogeneity, imbalanced data, model interpretability, overfitting, and integration with clinical workflows. In this review, some of the various possible solutions to these challenges are presented and discussed; these include training with longitudinal and multimodal datasets, dense training with multitask learning and multimodal learning, self-supervised contrastive learning, various image modifications and syntheses using generative models, explainable AI, causal learning, federated learning with large data models, and digital twins.

Keywords

Acknowledgement

This research was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI21C1148 and HI22C172300).

References

  1. Kelly BS, Judge C, Bollard SM, Clifford SM, Healy GM, Aziz A, et al. Radiology artificial intelligence: a systematic review and evaluation of methods (RAISE). Eur Radiol 2022;32:7998-8007
  2. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402-2410
  3. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017;318:2199-2210
  4. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115-118
  5. Choi KJ, Jang JK, Lee SS, Sung YS, Shim WH, Kim HS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology 2018;289:688-697
  6. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med 2018;24:1559-1567
  7. De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342-1350
  8. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019;25:954-961
  9. Dunnmon JA, Yi D, Langlotz CP, Re C, Rubin DL, Lungren MP. Assessment of convolutional neural networks for automated classification of chest radiographs. Radiology 2019;290:537-544
  10. Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, et al. Development and validation of deep learning-based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 2019;290:218-228
  11. Milea D, Najjar RP, Zhubo J, Ting D, Vasseneix C, Xu X, et al. Artificial intelligence to detect papilledema from ocular fundus photographs. N Engl J Med 2020;382:1687-1695
  12. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60-88
  13. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against healthcare professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019;1:e271-e297
  14. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: NIPS, ed. Advances in neural information processing systems 30. La Jolla: NIPS, 2017:5999-6009
  15. Li X, Shen L, Xie X, Huang S, Xie Z, Hong X, et al. Multiresolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif Intell Med 2020;103:101744
  16. Wang Z, Li M, Wang H, Jiang H, Yao Y, Zhang H, et al. Breast cancer detection using extreme learning machine based on feature fusion with CNN deep features. IEEE Access 2019;7:105146-105158
  17. Yoon JH, Kim EK. Deep learning-based artificial intelligence for mammography. Korean J Radiol 2021;22:1225-1239
  18. Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 2017;12:399-411
  19. U.S. Food and Drug Administration (FDA). Artificial intelligence and machine learning (AI/ML)-enabled medical devices [accessed on April 16, 2023]. Available at: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-aiml-enabledmedical-devices
  20. Esteva A, Chou K, Yeung S, Naik N, Madani A, Mottaghi A, et al. Deep learning-enabled medical computer vision. NPJ Digit Med 2021;4:5
  21. Wang P, Berzin TM, Glissen Brown JR, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut 2019;68:1813-1819
  22. Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open 2019;2:e191095
  23. Wang C, Ma J, Zhang S, Shao J, Wang Y, Zhou HY, et al. Development and validation of an abnormality-derived deep-learning diagnostic system for major respiratory diseases. NPJ Digit Med 2022;5:124
  24. Greenspan H, Van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 2016;35:1153-1159
  25. Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. Deep learning for health informatics. IEEE J Biomed Health Inform 2017;21:4-21
  26. Zhang H, Zhang L, Jiang Y. Overfitting and underfitting analysis for deep learning based end-to-end communication systems. Proceedings of the 11th International Conference on Wireless Communications and Signal Processing (WCSP); 2019 Oct 23-25; Xi'an, China: IEEE; 2019; p.1-6
  27. Rice L, Wong E, Kolter Z. Overfitting in adversarially robust deep learning. Proceedings of the 37th International Conference on Machine Learning; 2020 Jul 13-18 (Online); ICML; 2020;p.8093-8104
  28. He H, Garcia EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng 2009;21:1263-1284
  29. Lipton ZC. The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 2018;16:31-57
  30. Guo W, Wang J, Wang S. Deep multimodal representation learning: a survey. IEEE Access 2019;7:63373-63394
  31. Goodfellow I. NIPS 2016 tutorial: generative adversarial networks. arXiv: 1701.00160v4 [Preprint]. 2016 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1701.00160
  32. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. Commun ACM 2020;63:139-144
  33. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst 2020;33:6840-6851
  34. Kingma DP, Dhariwal P. Glow: generative flow with invertible 1x1 convolutions. Adv Neural Inf Process Syst 2018;31:10215-10224
  35. Kingma DP, Welling M. Auto-encoding variational bayes. arXiv: 1312.6114v11 [Preprint]. 2013 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1312.6114
  36. Lyu H, Sha N, Qin S, Yan M, Xie Y, Wang R. Manifold denoising by nonlinear robust principal component analysis. In: NIPS, ed. Advances in neural information processing systems 32 (NeurIPS 2019). La Jolla: NIPS, 2019:1-11
  37. Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019;46:550-562
  38. Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017;36:2536-2545
  39. Wang J, Zhao Y, Noble JH, Dawant BM. Conditional generative adversarial networks for metal artifact reduction in CT images of the ear. Med Image Comput Comput Assist Interv 2018;11070:3-11
  40. Kim KH, Do WJ, Park SH. Improving resolution of MR images with an adversarial network incorporating images with different contrast. Med Phys 2018;45:3120-3131
  41. Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497
  42. Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2017;37:1310-1321
  43. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys 2018;45:3627-3636
  44. Lei Y, Harms J, Wang T, Liu Y, Shu HK, Jani AB, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Med Phys 2019;46:3565-3581
  45. Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol 2019;64:215016
  46. Dong X, Lei Y, Wang T, Thomas M, Tang L, Curran WJ, et al. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys 2019;46:2157-2168
  47. Huo Y, Xu Z, Bao S, Bermudez C, Plassard AJ, Liu J, et al. Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks. Proc SPIE Int Soc Opt Eng 2018;10574:1057409
  48. Liu X, Guo S, Zhang H, He K, Mu S, Guo Y, et al. Accurate colorectal tumor segmentation for CT scans based on the label assignment generative adversarial network. Med Phys 2019;46:3532-3542
  49. Xue Y, Xu T, Zhang H, Long LR, Huang X. SegAN: adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics 2018;16:383-392
  50. Tanner C, Ozdemir F, Profanter R, Vishnevsky V, Konukoglu E, Goksel O. Generative adversarial networks for MRCT deformable image registration. arXiv: 1807.07349v1 [Preprint]. 2018 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1807.07349
  51. Yan P, Xu S, Rastinehad AR, Wood BJ. Adversarial image registration with application for MR and TRUS image fusion. arXiv: 1804.11024v2 [Preprint]. 2018 [cited January 1, 2023]. Available at: https://doi.org/10.48550/arXiv.1804.11024
  52. Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 Apr4-7; Washington, DC, USA: IEEE; 2018; p.1038-1042
  53. Xie Y, Zhang J, Xia Y. Semi-supervised adversarial model for benign-malignant lung nodule classification on chest CT. Med Image Anal 2019;57:237-248
  54. Wolleb J, Bieder F, Sandkuhler R, Cattin PC. Diffusion models for medical anomaly detection. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. Medical image computing and computer assisted intervention - MICCAI 2022. Lecture notes in computer science, vol 13438. Cham: Springer, 2022:35-45
  55. Wolleb J, Sandkuhler R, Cattin PC. Descargan: disease-specific anomaly detection with weak supervision. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., eds. Medical image computing and computer assisted intervention - MICCAI 2020. Lecture notes in computer science, vol 12264. Cham: Springer, 2020:14-24
  56. Nakao T, Hanaoka S, Nomura Y, Murata M, Takenaga T, Miki S, et al. Unsupervised deep anomaly detection in chest radiographs. J Digit Imaging 2021;34:418-427
  57. Fujioka T, Kubota K, Mori M, Kikuchi Y, Katsuta L, Kimura M, et al. Efficient anomaly detection with generative adversarial network for breast ultrasound imaging. Diagnostics (Basel) 2020;10:456
  58. Lee S, Jeong B, Kim M, Jang R, Paik W, Kang J, et al. Emergency triage of brain computed tomography via anomaly detection with a deep generative model. Nat Commun 2022;13:4251
  59. van Hespen KM, Zwanenburg JJM, Dankbaar JW, Geerlings MI, Hendrikse J, Kuijf HJ. An anomaly detection approach to identify chronic brain infarcts on MRI. Sci Rep 2021;11:7714
  60. Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Detecting abnormalities in resting-state dynamics: an unsupervised learning approach. In: Suk HI, Liu M, Yan P, Lian C, eds. Machine learning in medical imaging (MLMI 2019). Lecture notes in computer science, vol 11861. Cham: Springer, 2019:301-309
  61. Han C, Rundo L, Murao K, Noguchi T, Shimahara Y, Milacski ZA, et al. MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinformatics 2021;22(Suppl 2):31
  62. Bowles C, Gunn R, Hammers A, Rueckert D. Modelling the progression of Alzheimer's disease in MRI using generative adversarial networks. In: Angelini ED, Landman BA, eds. Medical imaging 2018: image processing (vol 10574). Bellingham, WA: SPIE, 2018:397-407
  63. Lu D, Popuri K, Ding GW, Balachandar R, Beg MF; Alzheimer's Disease Neuroimaging Initiative. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer's disease using structural MR and FDG-PET images. Sci Rep 2018;8:5697
  64. Mehdipour Ghazi M, Nielsen M, Pai A, Cardoso MJ, Modat M, Ourselin S, et al. Training recurrent neural networks robust to incomplete data: application to Alzheimer's disease progression modeling. Med Image Anal 2019;53:39-46
  65. Goulet MA, Cousineau D. The power of replicated measures to increase statistical power. Adv Methods Pract Psychol Sci 2019;2:199-213
  66. Ma Y, Mazumdar M, Memtsoudis SG. Beyond repeated-measures analysis of variance: advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg Anesth Pain Med 2012;37:99-105
  67. Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med 2022;28:1773-1784
  68. Vickers AJ. How many repeated measures in repeated measures designs? Statistical issues for comparative trials. BMC Med Res Methodol 2003;3:22
  69. Barros V, Tlusty T, Barkan E, Hexter E, Gruen D, Guindy M, et al. Virtual biopsy by using artificial intelligence-based multimodal modeling of binational mammography data. Radiology 2023;306:e220027
  70. Goto S, Mahara K, Beussink-Nelson L, Ikura H, Katsumata Y, Endo J, et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat Commun 2021;12:2726
  71. Huang SC, Pareek A, Seyyedi S, Banerjee I, Lungren MP. Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digit Med 2020;3:136
  72. Kline A, Wang H, Li Y, Dennis S, Hutch M, Xu Z, et al. Multimodal machine learning in precision health: a scoping review. NPJ Digit Med 2022;5:171
  73. Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, et al. Predicting Alzheimer's disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front Aging Neurosci 2020;12:77
  74. Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep 2019;9:20038
  75. Venugopalan J, Tong L, Hassanzadeh HR, Wang MD. Multimodal deep learning models for early detection of Alzheimer's disease stage. Sci Rep 2021;11:3254
  76. Vandenhende S, Georgoulis S, Van Gansbeke W, Proesmans M, Dai D, Van Gool L. Multi-task learning for dense prediction tasks: a survey. IEEE Trans Pattern Anal Mach Intell 2021;44:3614-3633
  77. Caruana R. Multitask learning. Mach Learn 1997;28:41-75
  78. Misra I, Shrivastava A, Gupta A, Hebert M. Cross-stitch networks for multi-task learning. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA: IEEE; 2016; p.3994-4003
  79. Gao Y, Ma J, Zhao M, Liu W, Yuille AL. NDDR-CNN: layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA: IEEE; 2019; p.3205-3214
  80. Liu S, Johns E, Davison AJ. End-to-end multi-task learning with attention. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA: IEEE; 2019; p.1871-1880
  81. Kisling LA, Das JM. Prevention strategies. Treasure Island, FL: StatPearls Publishing, 2023
  82. Xu D, Ouyang W, Wang X, Sebe N. PAD-net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-23; Salt Lake City, UT, USA; IEEE; 2018; p.675-684
  83. Zhang Z, Cui Z, Xu C, Yan Y, Sebe N, Yang J. Pattern-affinitive propagation across depth, surface normal and semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun 15-20; Long Beach, CA, USA: IEEE; 2019; p.4106-4115
  84. Zhang Z, Cui Z, Xu C, Jie Z, Li X, Yang J. Joint task-recursive learning for semantic segmentation and depth estimation. Proceedings of the European Conference on Computer Vision (ECCV); 2018 Sep 8-14; Munich, Germany: ECCV; 2018; p.235-251
  85. He T, Guo J, Wang J, Xu X, Yi Z. Multi-task learning for the segmentation of thoracic organs at risk in CT images. Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI); 2019 Apr 8-11; Venice, Italy: IEEE; p.10-13
  86. Gao F, Yoon H, Wu T, Chu X. A feature transfer enabled multitask deep learning model on medical imaging. Expert Syst Appl 2020;143:112957
  87. Amyar A, Modzelewski R, Li H, Ruan S. Multi-task deep learning based CT imaging analysis for COVID-19 pneumonia: classification and segmentation. Comput Biol Med 2020;126:104037
  88. Kyung S, Shin K, Jeong H, Kim KD, Park J, Cho K, et al. Improved performance and robustness of multi-task representation learning with consistency loss between pretexts for intracranial hemorrhage identification in head CT. Med Image Anal 2022;81:102489
  89. Wang X, Peng Y, Lu L, Lu Z, Summers RM. TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-23; Salt Lake City, UT, USA; IEEE; 2018; p.9049-9058
  90. Devlin J, Chang MW, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. arXiv: 1810.04805v2 [Preprint]. 2018 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1810.04805
  91. Moon JH, Lee H, Shin W, Kim YH, Choi E. Multi-modal understanding and generation for medical images and text via vision-language pre-training. IEEE J Biomed Health Inform 2022;26:6070-6080
  92. Park S, Lee ES, Lee JE, Ye JC. Self-supervised multi-modal training from uncurated image and reports enables zero-shot oversight artificial intelligence in radiology. arXiv:2208.05140v4 [Preprint]. 2022 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.2208.05140
  93. Hsu TMH, Weng WH, Boag W, McDermott M, Szolovits P. Unsupervised multimodal representation learning across medical images and reports. arXiv: 1811.08615v1 [Preprint]. 2018 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1811.08615
  94. Liu G, Hsu TMH, McDermott M, Boag W, Weng WH, Szolovits P, et al. Clinically accurate chest X-ray report generation. Proceedings of the 4th Machine Learning for Healthcare Conference; 2019 Aug 9-10; Ann Arbor, Michigan, MI, USA: PMLR; 2019; p.249-269
  95. Liu F, Wu X, Ge S, Fan W, Zou Y. Exploring and distilling posterior and prior knowledge for radiology report generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA: IEEE; 2021; p.13753-13762
  96. Wang Z, Zhou L, Wang L, Li X. A self-boosting framework for automated radiographic report generation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA: IEEE; 2021; p.2433-2442
  97. Yang X, Ye M, You Q, Ma F. Writing by memorizing: hierarchical retrieval-based medical report generation. In: Association for Computational Linguistics, ed. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (volume 1: long papers). Stroudsburg: Association for Computational Linguistics, 2021:5000-5009
  98. OpenAI. GPT-3.5 [accessed on February 16, 2023]. Available at: https://platform.openai.com/docs/models/gpt-3-5
  99. Bommasani R, Hudson DA, Adeli E, Altman R, Arora S, von Arx S, et al. On the opportunities and risks of foundation models. arXiv: 2108.07258v3 [Preprint]. 2021 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.2108.07258
  100. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35:1798-1828
  101. Oord AVD, Li Y, Vinyals O. Representation learning with contrastive predictive coding. arXiv: 1807.03748v2 [Preprint]. 2018 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1807.03748
  102. Ouyang J, Zhao Q, Adeli E, Zaharchuk G, Pohl KM. Self-supervised learning of neighborhood embedding for longitudinal MRI. Med Image Anal 2022;82:102571
  103. Wu Y, Zeng D, Wang Z, Shi Y, Hu J. Distributed contrastive learning for medical image segmentation. Med Image Anal 2022;81:102564
  104. Seyfioglu MS, Liu Z, Kamath P, Gangolli S, Wang S, Grabowski T, et al. Brain-aware replacements for supervised contrastive learning in detection of Alzheimer's disease. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, eds. Medical image computing and computer assisted intervention - MICCAI 2022. Lecture notes in computer science, vol 13431. Cham: Springer, 2022:461-470
  105. Chaitanya K, Erdil E, Karani N, Konukoglu E. Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H, eds. Advances in neural information processing systems 33 (NeurIPS 2020). La Jolla, CA: NIPS, 2020:12546-12558
  106. Wang J, Li X, Han Y, Qin J, Wang L, Qichao Z. Separated contrastive learning for organ-at-risk and gross-tumor-volume segmentation with limited annotation. Proc AAAI Conf Artif Intell 2022;36:2459-2467
  107. Park T, Efros AA, Zhang R, Zhu JY. Contrastive learning for unpaired image-to-image translation. In: Vedaldi A, Bischof H, Brox T, Frahm JM, eds. Computer vision - ECCV 2020 (vol 12354). Cham: Springer, 2020:319-345
  108. Cho K, Seo J, Kyung S, Kim M, Hong GS, Kim N. Bone suppression on pediatric chest radiographs via a deep learning-based cascade model. Comput Methods Programs Biomed 2022;215:106627
  109. Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, et al. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol 2019;64:125002
  110. Harms J, Lei Y, Wang T, Zhang R, Zhou J, Tang X, et al. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Med Phys 2019;46:3998-4009
  111. Nie D, Trullo R, Lian J, Wang L, Petitjean C, Ruan S, et al. Medical image synthesis with deep convolutional adversarial networks. IEEE Trans Biomed Eng 2018;65:2720-2730
  112. Yao Z, Luo T, Dong Y, Jia X, Deng Y, Wu G, et al. Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis. Nat Commun 2023;14:788
  113. Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol 2018;63:185001
  114. Lei Y, Dong X, Tian Z, Liu Y, Tian S, Wang T, et al. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network. Med Phys 2020;47:530-540
  115. Conte GM, Weston AD, Vogelsang DC, Philbrick KA, Cai JC, Barbera M, et al. Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 2021;299:313-323
  116. Al Khalil Y, Amirrajab S, Lorenz C, Weese J, Pluim J, Breeuwer M. On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images. Med Image Anal 2023;84:102688
  117. Chung M, Kong ST, Park B, Chung Y, Jung KH, Seo JB. Utilizing synthetic nodules for improving nodule detection in chest radiographs. J Digit Imaging 2022;35:1061-1068
  118. Jayachandran Preetha C, Meredig H, Brugnara G, Mahmutoglu MA, Foltyn M, Isensee F, et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 2021;3:e784-e794
  119. Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Sci Rep 2019;9:16884
  120. Goldstein M, Uchida S. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS One 2016;11:e0152173
  121. Tschuchnig ME, Gadermayr M. Anomaly detection in medical imaging - A mini review. In: Haber P, Lampoltshammer TJ, Leopold H, Mayr M, eds. Data science - Analytics and applications. Wiesbaden: Springer Vieweg, 2022:33-38
  122. Zhang J, Xie Y, Pang G, Liao Z, Verjans J, Li W, et al. Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection. IEEE Trans Med Imaging 2020;40:879-890
  123. Wei Q, Ren Y, Hou R, Shi B, Lo JY, Carin L. Anomaly detection for medical images based on a one-class classification. In: Petrick N, Mori K, eds. Medical imaging 2018: computer-aided diagnosis (vol 10575). Bellingham: SPIE, 2018:375-380
  124. Tlusty T, Amit G, Ben-Ari R. Unsupervised clustering of mammograms for outlier detection and breast density estimation. Proceedings of the 24th International Conference on Pattern Recognition (ICPR); 2018 Aug 20-24; Beijing, China: IEEE; 2018; p.3808-3813
  125. Sato D, Hanaoka S, Nomura Y, Takenaga T, Miki S, Yoshikawa T, et al. A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes. In: Petrick N, Mori K, eds. Medical imaging 2018: computer-aided diagnosis (vol 10575). Bellingham: SPIE, 2018:388-393
  126. Pawlowski N, Lee MC, Rajchl M, McDonagh S, Ferrante E, Kamnitsas K, et al. Unsupervised lesion detection in brain CT using bayesian convolutional autoencoders. OpenReview [Preprint]. 2018 [cited January 5, 2023]. Available at: https://openreview.net/forum?id=S1hpzoisz
  127. Zimmerer D, Isensee F, Petersen J, Kohl S, Maier-Hein K. Unsupervised anomaly localization using variational auto-encoders. In: Shen D, Liu T, Peters TM, Staib LH, Essert C, Zhou S, et al., eds. Medical image computing and computer assisted intervention - MICCAI 2019. Lecture notes in computer science, vol 11767. Cham: Springer, 2019:289-297
  128. Heer M, Postels J, Chen X, Konukoglu E, Albarqouni S. The OOD blind spot of unsupervised anomaly detection. Proceedings of the 4th Medical Imaging with Deep Learning; 2021 Jul 7-9; Lubeck, Germany: PMLR; 2021; p.286-300
  129. Chen X, You S, Tezcan KC, Konukoglu E. Unsupervised lesion detection via image restoration with a normative prior. Med Image Anal 2020;64:101713
  130. Baur C, Wiestler B, Muehlau M, Zimmer C, Navab N, Albarqouni S. Modeling healthy anatomy with artificial intelligence for unsupervised anomaly detection in brain MRI. Radiol Artif Intell 2021;3:e190169
  131. Alaverdyan Z, Jung J, Bouet R, Lartizien C. Regularized siamese neural network for unsupervised outlier detection on brain multiparametric magnetic resonance imaging: application to epilepsy lesion screening. Med Image Anal 2020;60:101618
  132. Zhao H, Li Y, He N, Ma K, Fang L, Li H, et al. Anomaly detection for medical images using self-supervised and translation-consistent features. IEEE Trans Med Imaging 2021;40:3641-3651
  133. Kim CM, Hong EJ, Park RC. Chest X-ray outlier detection model using dimension reduction and edge detection. IEEE Access 2021;9:86096-86106
  134. Quellec G, Lamard M, Cozic M, Coatrieux G, Cazuguel G. Multiple-instance learning for anomaly detection in digital mammography. IEEE Trans Med Imaging 2016;35:1604-1614
  135. Wong KC, Karargyris A, Syeda-Mahmood T, Moradi M. Building disease detection algorithms with very small numbers of positive samples. In: Descoteaux M, Maier-Hein L, Franz A, Jannin P, Collins D, Duchesne S, eds. Medical image computing and computer assisted intervention - MICCAI 2017. Lecture notes in computer science, vol 10435. Cham: Springer, 2017:471-479
  136. Choi H, Ha S, Kang H, Lee H, Lee DS; Alzheimer's Disease Neuroimaging Initiative. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine 2019;43:447-453
  137. Baur C, Graf R, Wiestler B, Albarqouni S, Navab N. SteGANomaly: inhibiting CycleGAN steganography for unsupervised anomaly detection in brain MRI. In: Martel AL, Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, et al., eds. Medical image computing and computer assisted intervention - MICCAI 2020. Lecture notes in computer science, vol 12262. Cham: Springer, 2020:718-727
  138. Watson DS, Krutzinna J, Bruce IN, Griffiths CE, McInnes IB, Barnes MR, et al. Clinical applications of machine learning algorithms: beyond the black box. BMJ 2019;364:l886
  139. European Council. The general data protection regulation [accessed on April 21, 2023]. Available at: https://www.consilium.europa.eu/en/policies/data-protection/dataprotection-regulation
  140. Cohen IG. Informed consent and medical artificial intelligence: what to tell the patient? Georgetown Law J 2020;108:1425-1469
  141. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017;60:1577-1585
  142. Johansen K. Efficacy of metformin in the treatment of NIDDM. Meta-analysis. Diabetes Care 1999;22:33-37
  143. Jia X, Ren L, Cai J. Clinical implementation of AI technologies will require interpretable AI models. Med Phys 2020;47:1-4
  144. Noble WS. What is a support vector machine? Nat Biotechnol 2006;24:1565-1567
  145. Breiman L. Random forests. Mach Learn 2001;45:5-32
  146. Safavian SR, Landgrebe D. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 1991;21:660-674
  147. Lin Z, Zhang D, Tao Q, Shi D, Haffari G, Wu Q, et al. Medical visual question answering: a survey. Artif Intell Med 2023;143:102611
  148. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA: IEEE; 2016; p.2921-2929
  149. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice, Italy: IEEE; 2017; p.618-626
  150. Ribeiro MT, Singh S, Guestrin C. "Why should I trust you?": explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 Aug 13-17; San Francisco, CA, USA: ACM; 2016; p.1135-1144
  151. van der Velden BHM, Kuijf HJ, Gilhuijs KGA, Viergever MA. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med Image Anal 2022;79:102470
  152. Robinson LD, Robert Dorroh J, Lien D, Tiku ML. The effects of covariate adjustment in generalized linear models. Commun Stat Theory Methods 1998;27:1653-1675
  153. Shpitser I, VanderWeele T, Robins JM. On the validity of covariate adjustment for estimating causal effects. arXiv:1203.3515v1 [Preprint]. 2012 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.1203.3515
  154. Kahlert J, Gribsholt SB, Gammelager H, Dekkers OM, Luta G. Control of confounding in the analysis phase - an overview for clinicians. Clin Epidemiol 2017;9:195-204
  155. Geirhos R, Jacobsen JH, Michaelis C, Zemel R, Brendel W, Bethge M, et al. Shortcut learning in deep neural networks. Nat Mach Intell 2020;2:665-673
  156. Brown A, Tomasev N, Freyberg J, Liu Y, Karthikesalingam A, Schrouff J. Detecting shortcut learning for fair medical AI using shortcut testing. Nat Commun 2023;14:4314
  157. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 2009;20:488-495
  158. Kim KD, Cho K, Kim M, Lee KH, Lee S, Lee SM, et al. Enhancing deep learning based classifiers with inpainting anatomical side markers (L/R markers) for multi-center trials. Comput Methods Programs Biomed 2022;220:106705
  159. Smith VA, Coffman CJ, Hudgens MG. Interpreting the results of intention-to-treat, per-protocol, and as-treated analyses of clinical trials. JAMA 2021;326:433-434
  160. Klontzas ME, Gatti AA, Tejani AS, Kahn CE Jr. AI reporting guidelines: how to select the best one for your research. Radiol Artif Intell 2023;5:e230055
  161. Park SH, Han K, Jang HY, Park JE, Lee JG, Kim DW, et al. Methods for clinical evaluation of artificial intelligence algorithms for medical diagnosis. Radiology 2023;306:20-31
  162. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol 2019;20:405-410
  163. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800-809
  164. Luo Y, Peng J, Ma J. When causal inference meets deep learning. Nat Mach Intell 2020;2:426-427
  165. Vlontzos A, Rueckert D, Kainz B. A review of causality for learning algorithms in medical image analysis. arXiv: 2206.05498v2 [Preprint]. 2022 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.2206.05498
  166. Wang R, Chaudhari P, Davatzikos C. Harmonization with flow-based causal inference. Med Image Comput Comput Assist Interv 2021;12903:181-190
  167. Pawlowski N, Coelho de Castro D, Glocker B. Deep structural causal models for tractable counterfactual inference. In: Larochelle H, Ranzato M, Hadsell R, Balcan M, Lin H, eds. Advances in neural information processing systems 33 (NeurIPS 2020). La Jolla: NIPS, 2020:857-869
  168. Polsterl S, Wachinger C. Estimation of causal effects in the presence of unobserved confounding in the Alzheimer's continuum. In: Feragen A, Sommer S, Schnabel J, Nielsen M, eds. Information processing in medical imaging. IPMI 2021. Lecture notes in computer science, vol 12729. Cham: Springer, 2021:45-57
  169. Zhuang J, Dvornek N, Tatikonda S, Papademetris X, Ventola P, Duncan JS. Multiple-shooting adjoint method for whole-brain dynamic causal modeling. In: Feragen A, Sommer S, Schnabel J, Nielsen M, eds. Information processing in medical imaging. IPMI 2021. Lecture notes in computer science, vol 12729. Cham: Springer, 2021:58-70
  170. Clivio O, Falck F, Lehmann B, Deligiannidis G, Holmes C. Neural score matching for high-dimensional causal inference. Proceedings of The 25th International Conference on Artificial Intelligence and Statistics; 2022 Mar 28-30; Valencia, Spain: PMLR; 2022; p.7076-7110
  171. da Silva M, Garcia K, Sudre CH, Bass C, Cardoso MJ, Robinson E. Biomechanical modelling of brain atrophy through deep learning. arXiv: 2012.07596v1 [Preprint]. 2020 [cited January 5, 2023]. Available at: https://doi.org/10.48550/arXiv.2012.07596
  172. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017); 2017 Apr 20-22; Ft. Lauderdale, FL, USA: PMLR; 2017; p.1273-1282
  173. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G. A survey on security and privacy of federated learning. Future Gener Comput Syst 2021;115:619-640
  174. Joshi M, Pal A, Sankarasubbu M. Federated learning for healthcare domain-pipeline, applications and challenges. ACM Trans Comput Healthc 2022;3:1-36
  175. Lu MT, Ivanov A, Mayrhofer T, Hosny A, Aerts HJWL, Hoffmann U. Deep learning to assess long-term mortality from chest radiographs. JAMA Netw Open 2019;2:e197416
  176. Lu MT, Raghu VK, Mayrhofer T, Aerts HJWL, Hoffmann U. Deep learning using chest radiographs to identify high-risk smokers for lung cancer screening computed tomography: development and validation of a prediction model. Ann Intern Med 2020;173:704-713
  177. Raghu VK, Weiss J, Hoffmann U, Aerts HJWL, Lu MT. Deep learning to estimate biological age from chest radiographs. JACC Cardiovasc Imaging 2021;14:2226-2236
  178. Sabottke CF, Breaux MA, Spieler BM. Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. Emerg Radiol 2020;27:463-468
  179. Li D, Lin CT, Sulam J, Yi PH. Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms. Emerg Radiol 2022;29:365-370
  180. Yi PH, Wei J, Kim TK, Shin J, Sair HI, Hui FK, et al. Radiology "forensics": determination of age and sex from chest radiographs using deep learning. Emerg Radiol 2021;28:949-954
  181. Yang CY, Pan YJ, Chou Y, Yang CJ, Kao CC, Huang KC, et al. Using deep neural networks for predicting age and sex in healthy adult chest radiographs. J Clin Med 2021;10:4431
  182. Gaser C, Franke K, Kloppel S, Koutsouleris N, Sauer H; Alzheimer's Disease Neuroimaging Initiative. BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease. PLoS One 2013;8:e67346
  183. Franke K, Gaser C, Manor B, Novak V. Advanced BrainAGE in older adults with type 2 diabetes mellitus. Front Aging Neurosci 2013;5:90
  184. Lowe LC, Gaser C, Franke K; Alzheimer's Disease Neuroimaging Initiative. The effect of the APOE genotype on individual BrainAGE in normal aging, mild cognitive impairment, and Alzheimer's disease. PLoS One 2016;11:e0157514
  185. Cole JH, Annus T, Wilson LR, Remtulla R, Hong YT, Fryer TD, et al. Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline. Neurobiol Aging 2017;56:41-49
  186. Cole JH, Underwood J, Caan MW, De Francesco D, van Zoest RA, Leech R, et al. Increased brain-predicted aging in treated HIV disease. Neurology 2017;88:1349-1357
  187. Cole JH, Poudel RPK, Tsagkrasoulis D, Caan MWA, Steves C, Spector TD, et al. Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker. Neuroimage 2017;163:115-124
  188. Steffener J, Habeck C, O'Shea D, Razlighi Q, Bherer L, Stern Y. Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiol Aging 2016;40:138-144
  189. Luders E, Cherbuin N, Kurth F. Forever Young(er): potential age-defying effects of long-term meditation on gray matter atrophy. Front Psychol 2015;5:1551
  190. Ieki H, Ito K, Saji M, Kawakami R, Nagatomo Y, Koyama S, et al. Deep learning-based chest X-ray age serves as a novel biomarker for cardiovascular aging. bioRxiv [Preprint]. 2021 [cited January 5, 2023]. Available at: https://doi.org/10.1101/2021.03.24.436773
  191. Li Z, Li W, Yan W, Zhang R, Xie S. Data-driven learning to identify biomarkers in bipolar disorder. Comput Methods Programs Biomed 2022;226:107112
  192. Nam JG, Kang HR, Lee SM, Kim H, Rhee C, Goo JM, et al. Deep learning prediction of survival in patients with chronic obstructive pulmonary disease using chest radiographs. Radiology 2022;305:199-208
  193. Shengli W. Is human digital twin possible? Comput Methods Programs Biomed Update 2021;1:100014
  194. Barricelli BR, Casiraghi E, Gliozzo J, Petrini A, Valtolina S. Human digital twin for fitness management. IEEE Access 2020;8:26637-26664
  195. Laubenbacher R, Sluka JP, Glazier JA. Using digital twins in viral infection. Science 2021;371:1105-1106
  196. Laamarti F, Badawi HF, Ding Y, Arafsha F, Hafidh B, El Saddik A. An ISO/IEEE 11073 standardized digital twin framework for health and well-being in smart cities. IEEE Access 2020;8:105950-105961
  197. Laaki H, Miche Y, Tammi K. Prototyping a digital twin for real time remote control over mobile networks: application of remote surgery. IEEE Access 2019;7:20325-20336
  198. Pang J, Huang Y, Xie Z, Li J, Cai Z. Collaborative city digital twin for the COVID-19 pandemic: a federated learning solution. Tsinghua Sci Technol 2021;26:759-771
  199. Liu Y, Zhang L, Yang Y, Zhou L, Ren L, Wang F, et al. A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 2019;7:49088-49101
  200. Martinez-Velazquez R, Gamez R, El Saddik A. Cardio twin: a digital twin of the human heart running on the edge. Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA); 2019 Jun 26-28; Istanbul, Turkey: IEEE; 2019; p.1-6
  201. Jones G, Parr J, Nithiarasu P, Pant S. Machine learning for detection of stenoses and aneurysms: application in a physiologically realistic virtual patient database. Biomech Model Mechanobiol 2021;20:2097-2146
  202. Hirschvogel M, Jagschies L, Maier A, Wildhirt SM, Gee MW. An in silico twin for epicardial augmentation of the failing heart. Int J Numer Method Biomed Eng 2019;35:e3233
  203. Ahmadian H, Mageswaran P, Walter BA, Blakaj DM, Bourekas EC, Mendel E, et al. A digital twin for simulating the vertebroplasty procedure and its impact on mechanical stability of vertebra in cancer patients. Int J Numer Method Biomed Eng 2022;38:e3600
  204. Aubert K, Germaneau A, Rochette M, Ye W, Severyns M, Billot M, et al. Development of digital twins to optimize trauma surgery and postoperative management. A case study focusing on tibial plateau fracture. Front Bioeng Biotechnol 2021;9:722275
  205. Batch KE, Yue J, Darcovich A, Lupton K, Liu CC, Woodlock DP, et al. Developing a cancer digital twin: supervised metastases detection from consecutive structured radiology reports. Front Artif Intell 2022;5:826402
  206. Wu C, Jarrett AM, Zhou Z, Elshafeey N, Adrada BE, Candelaria RP, et al. MRI-based digital models forecast patient-specific treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer. Cancer Res 2022;82:3394-3404
  207. Coorey G, Figtree GA, Fletcher DF, Redfern J. The health digital twin: advancing precision cardiovascular medicine. Nat Rev Cardiol 2021;18:803-804
  208. Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D, et al. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field. NPJ Digit Med 2022;5:126
  209. Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, et al. The 'digital twin' to enable the vision of precision cardiology. Eur Heart J 2020;41:4556-4564