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∗-EINSTEIN SOLITONS AND LP -SASAKIAN MANIFOLDS
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Abstract. The aim of the present paper is to study LP -Sasakian mani-

folds admitting ∗-Einstein soliton satisfying certain curvature conditions.
Finally, we have constructed a 3-dimensional example of an LP -Sasakian

manifold admitting ∗-Einstein soliton.

AMS Mathematics Subject Classification : 53C15, 53C21, 53C50, 53D25.

Key words and phrases : ∗-Einstein solitons, projective curvature tensor,
Einstein manifold, LP -Sasakian manifolds.

1. Introduction

In the beginning of 2016, Catino and Mazzieri [4] proposed a new notion on
a Riemannian manifold called “Einstein-soliton”, which generates self-similar
solution to Einstein flow ∂

∂tg = 2( r2g−S), and is governed through the equation

(£ξg)(V1, V2) + (2Λ− r)g(V1, V2) + 2S(V1, V2) = 0 (1)

for any vector fields V1, V2 on M , where £ξ denotes the Lie derivative operator
in the direction of vector field ξ, S is the Ricci tensor, r is the scalar curvature
of the Riemannian metric g and Λ ∈ R (R is the set of real numbers). The
Einstein soliton is called shrinking, steady or expanding if Λ < 0,= 0 or > 0,
respectively.

In [15], the authors studied ∗-Ricci soliton in real hypersurfaces of complex
space forms and defined by the equation

(£V g)(V1, V2) + 2Λg(V1, V2) + 2S∗(V1, V2) = 0, (2)

where

S∗(V1, V2) = Trace {ϕ ◦R(V1, ϕV2)} ,
where £V denotes the Lie derivative operator in the direction of vector field V
and S∗ is a tensor field of type (0, 2). It is to be noted that the notion of ∗-Ricci
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tensor was first introduced by Tachibana [27] on almost Hermitian manifolds
and further studied by Hamada [10] on real hypersurfaces of non-flat complex
space forms.

We introduce a new notion by replacing the Ricci tensor S by the ∗-Ricci
tensor S∗ and the scalar curvature r by the ∗-scalar curvature r∗ in (1), and
call as ∗−Einstein soliton (in short, ∗-ES). The ∗-ES is defined by the following
equation

(£ξg)(V1, V2) + (2Λ− r∗)g(V1, V2) + 2S∗(V1, V2) = 0, (3)

where the symbols £ξ and Λ are same as defined in (1). Likewise Einstein soliton,
the nature of ∗-ES depends on the values of Λ such that if Λ > 0,= 0 or < 0, then
the soliton is said to be expanding, steady or shrinking, respectively. We remark
that the notions of ∗−Ricci soliton and ∗-ES are different for the manifolds of
non-constant scalar curvature and if the scalar curvature is constant, then these
notions coincide.

Analogously to the Sasakian manifolds, in 1989, Matsumoto [17] introduced
the notion of LP -Sasakian manifolds, while in 1992, the same notion was inde-
pendently studied by Mihai and Rosca [19] and they obtained several results on
this manifold. The Lorentzian para-Sasakian manifolds have also been studied
by various authors such as [1, 6, 7, 22, 24, 25] and many others. Very recently,
the authors Chaubey and Suh [5] studied the properties of almost Ricci solitons
and gradient almost Ricci solitons on Lorentzian manifolds; and Haseeb and
Almusawa [12] studied Lorentzian para-Kenmotsu manifolds admitting η-Ricci
solitons. Also, we recommend the papers [2, 8, 9, 11, 13, 16, 23, 26, 28] for more
details about the related studies in different spaces.

Throughout the manuscript, we denote an n-dimensional LP -Sasakian mani-
fold byMn(LPS) and ∗-Einstein soliton by ∗-ES. The present paper is organized
as follows: After preliminaries in section 3, we study ∗-ES in an Mn(LPS). In
section 4, we consider the Ricci semi-symmetric Mn(LPS) admitting ∗-ES. In
section 5, we consider an Mn(LPS) endowed with ∗-ES, and it is shown that
the manifolds with the ∗-ES satisfying the curvature conditions: P (V1, ξ) ·S = 0,
R(V1, ξ) · P = 0 and S(V1, ξ) · P = 0 are Einstein manifolds; moreover we dis-
cussed the conditions for the ∗-ES to be expanding, steady and shrinking in
each case. Section 6 deals with the study of Einstein semi-symmetric Mn(LPS)
admitting ∗-ES. In section 7, we proved that an Mn(LPS) endowed with ∗-ES
satisfying the curvature condition S(ξ, V1) ·R = 0 is an η-Einstein manifold and
the ∗-ES is shrinking. In section 8, we proved that an Mn(LPS) admitting
∗-ES with torse-forming vector field is a generalized quasi-Einstein manifold. In
the last section 9, we construct an example of an M3(LPS) which verifies the
expanding case of ∗-ES.

2. Preliminaries

Let M be an n-dimensional smooth manifold equipped with a triple (ϕ, ξ, η),
where ϕ is a tensor field of type (1, 1), ξ is the unit timelike vector field, η is a
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1-form such that [3, 21]

ϕ2V1 = V1 + η(V1)ξ, η(ξ) = −1, (4)

which implies

ϕξ = 0, η(ϕV1) = 0, rank(ϕ) = n− 1 (5)

for all V1 ∈ χ(M); where χ(M) denotes the set of all smooth vector fields of M .
The manifold M is called a Lorentzian almost paracontact manifold with

structure (ϕ, ξ, η, g) if it admits a Lorentzian metric g, such that

g(ϕV1, ϕV2) = g(V1, V2) + η(V1)η(V2), g(V1, ξ) = η(V1) (6)

for all V1, V2 ∈ χ(M), and the manifold with the structure (ϕ, ξ, η, g) is called a
Lorentzian almost paracontact manifold [17, 18]. A Lorentzian almost paracon-
tact manifold M equipped with the structure (ϕ, ξ, η, g) is called a Lorentzian
para-Sasakian manifold [17] if

(∇V1ϕ)V2 = η(V2)ϕ
2V1 + g(ϕV1, ϕV2)ξ, (7)

where ∇ stands for the Levi-Civita connection.
In an Mn(LPS), the following relations hold [7]:

∇V1ξ = ϕV1 ⇐⇒ (∇V1η)V2 = g(ϕV1, V2) = g(V1, ϕV2), (8)

g(R(V1, V2)V3, ξ) = η(R(V1, V2)V3) = g(V2, V3)η(V1)− g(V1, V3)η(V2), (9)

R(ξ, V1)V2 = g(V1, V2)ξ − η(V2)V1, (10)

R(V1, V2)ξ = η(V2)V1 − η(V1)V2, (11)

R(ξ, V1)ξ = V1 + η(V1)ξ, (12)

S(V1, ξ) = (n− 1)η(V1), (13)

(£ξg)(V1, V2) = 2g(ϕV1, V2) (14)

for all V1, V2, V3 on Mn(LPS), where R and Q represent the curvature tensor
and the Ricci operator of Mn(LPS), respectively.

AnMn(LPS) is said to be generalized η-Einstein manifold if its non-vanishing
Ricci tensor S is of the form [30]

S(V1, V2) = d1g(V1, V2) + d2η(V1)η(V2) + d3g(ϕV1, V2), (15)

where d1, d2 and d3 are smooth functions on Mn(LPS). If d3 = 0 (resp., d2 =
d3 = 0), then Mn(LPS) is called an η-Einstein (resp., an Einstein) manifold.

Recently, Haseeb and Chaubey [13] studied the properties of Lorentzian para-
Sasakian manifolds equipped with ∗-Ricci tensor and proved the following useful
lemma:

Lemma 2.1. [13] In an Mn(LPS), the ∗-Ricci tensor is given by

S∗(V2, V3) = S(V2, V3) + (n− 2)g(V2, V3)− g(V1, ϕV3)a (16)

+(2n− 3)η(V2)η(V3)

for any V2, V3 on Mn(LPS), where a = trace ϕ.
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By contacting (16) over V2 and V3, we find

r∗ = r + (n− 1)(n− 3)− a2. (17)

3. ∗−Einstein solitons in LP−Sasakian manifolds

Let us consider an Mn(LPS) admitting a ∗-ES, then (3) holds. Thus, by
using (14) in (3), we have

S∗(V1, V2) = (Λ− r∗

2
)g(V1, V2)− g(ϕV1, V2)

which by virtue of (16) takes the form

S(V1, V2) = A1g(V1, V2) +A2g(ϕV1, V2) +A3η(V1)η(V2), (18)

where A1 = −(Λ+n− 2− r∗

2 ), A2 = (a− 1) and A3 = −(2n− 3). Now by fixing
V2 = ξ in (18), we find

S(V1, ξ) = A4η(V1), (19)

where A4 = (n− Λ− 1 + r∗

2 ). On comparing (19) and (13) it follows that

Λ =
r∗

2
, (20)

where η(V1) ̸= 0. By contracting (18), we obtain r = 2nΛ
n−2 − (n−1)(n−3)+a2+

2a
n−2 . This relation together with (17) leads to r∗ = 2

n−2 (nΛ+a). Consequently,

from the relation (20) it follows that Λ = −a
2 . Thus, we state:

Theorem 3.1. An Mn(LPS) (n > 3) admitting a ∗−ES is a generalized η-
Einstein manifold. Moreover, the ∗-ES is expanding, steady or shrinking accord-
ing to a < 0, a = 0 or a > 0, respectively.

In particular, for a = 1, we have Λ = − 1
2 and hence (20) gives r∗ = −1. Now,

by using these values of Λ and r, (18) reduces to S(V1, V2) = (n− 2)g(V1, V2)−
(2n− 3)η(V1)η(V2). Thus, we have

Corollary 3.2. If an Mn(LPS) (n > 3) admits ∗-ES, then M is an η-Einstein
manifold and the soliton is always shrinking, provided a = 1.

4. Ricci semi-symmetric LP−Sasakian manifolds admitting
∗−Einstein solitons

In 1992, Mirzoyan [20] introduced the notion of Ricci semi-symmetric for Rie-
mann spaces. The geometrical interpretation of the (0, 4)-tensor R ·S, obtained
by the action of the curvature operator R(V1, V2) on the (0, 2)-symmetric Ricci
tensor,

(R · S)(V3, V4;V1, V2) = (R(V1, V2) · S)(V3, V4)

= −S(R(V1, V2)V3, V4)− S(V3, R(V1, V2)V4),

where V1, V2, V3, V4 on M . A Riemannian (semi-Riemannian) manifold M is
said to be Ricci semi-symmetric when R · S vanishes identically, i.e., R · S = 0.



∗-Einstein solitons and LP -Sasakian manifolds 581

Now, consider a vector v at any point p ∈ M and any coordinate parallelogram P
cornered at p with sides of lengths ∆x and ∆y tangent to the linearly independent
vectors x and y at p. Then, by parallel transport of v around P we obtain the
vector

v∗ = v + [R(x, y)v]∆x∆y +O>2(∆x,∆y),

so that

Ric(v∗) = Ric(v)− [(R · S)(v, v∗, x, y)]∆x∆y +O>2(∆x,∆y),

where the Ricci curvature in the direction of v∗ is denoted by Ric(v∗).

Theorem 4.1. [14] Let P be any infinitesimal coordinate parallelogram cornered
at a point p of M with sides of lengths ∆x and ∆y, which are tangent to vectors
x and y at p. Let v∗ be the vector obtained from v after parallel transport along
P. Then, in second-order approximation,

δPRic(v) = −(R · S)(v, v∗, x, y)∆x∆y,

i.e., the (0, 4)-tensor R · S of M measures the change in Ricci curvature at any
point p for any vector v under parallel transport of v around any infinitesimal
coordinate parallelogram Pcornered at p.

In this section we consider a ∗-ES soliton in an Mn(LPS) which is Ricci
semi-symmetric, i.e., R(V1, V2) · S = 0. This leads to

S(R(V1, V2)V4, V3) + S(V4, R(V1, V2)V3) = 0 (21)

for V1, V2, V3, V4 on Mn(LPS).
Putting V2 = ξ in (21) and then recalling (10), we arrive at

η(V4)S(V1, V3)− g(V1, V4)S(ξ, V3) + η(V3)S(V1, V4)− g(V1, V3)S(V4, ξ) = 0.

Again putting V4 = ξ and using (19), the foregoing equation takes the form

S(V1, V3) = (n− Λ− 1 +
r∗

2
)g(V1, V3). (22)

By means of the fact that in an Mn(LPS) admitting a ∗−ES equation (20)
holds. Thus, (22) turns to

S(V1, V3) = (n− 1)g(V1, V3). (23)

On contracting (23) it follows that r = n(n− 1), which in view of (20) and (17),

we find Λ = (n−1)(2n−3)−a2

2 . Thus, we have

Theorem 4.2. Let an Mn(LPS) be the Ricci semi-symmetric and admits a
∗−ES. Then Mn(LPS) is an Einstein manifold and the ∗-ES is expanding,
steady or shrinking according to a2 < (n − 1)(2n − 3), = (n − 1)(2n − 3) or
> (n− 1)(2n− 3), respectively.



582 Gazala, Mobin Ahmad and Nargis Jamal

5. Projective curvature tensor in LP−Sasakian manifolds admitting
∗−Einstein solitons

The projective curvature tensor P in an Mn(LPS) is defined by

P (V1, V2)V3 = R(V1, V2)V3 −
1

n− 1
{S(V2, V3)V1 − S(V1, V3)V2} (24)

for all V1, V2, V3 on Mn(LPS).
In this section, we study an Mn(LPS) admitting a ∗-ES satisfying certain

curvature conditions on the projective curvature tensor.
First, we consider anMn(LPS) admitting a ∗-ES which satisfies the condition

P (V1, ξ) · S = 0. Thus, we have

S(P (V1, ξ)V2, V3) + S(V2, P (V1, ξ)V3) = 0. (25)

From (10), (19) and (24), we find

P (V1, ξ)V2 = −g(V1, V2)ξ + (1− A4

n− 1
)η(V2)V1 +

1

n− 1
S(V1, V2)ξ. (26)

Plugging (26) into (25), we obtain

η(V2)S(V1, V3) + η(V3)S(V1, V2)−A4g(V1, V2)η(V3)−A4g(V1, V3)η(V2) = 0.

By putting V2 = ξ in the foregoing equation then using (4) and (19), we obtain
S(V1, V3) = A4g(V1, V3), which by using (20) takes the form

S(V1, V3) = (n− 1)g(V1, V3). (27)

On contracting (27), we obtain r = n(n− 1), which in view of (20) and (17), we

find Λ = (n−1)(2n−3)−a2

2 . Thus, we have

Theorem 5.1. If an Mn(LPS) admitting a ∗-ES satisfies the condition P (V1, ξ)·
S = 0. Then Mn(LPS) is an Einstein manifold. Moreover, the ∗-ES is expand-
ing, steady or shrinking according to a2 < (n− 1)(2n− 3), = (n− 1)(2n− 3) or
> (n− 1)(2n− 3), respectively.

Next, we consider an Mn(LPS) admitting a ∗-ES that satisfies the condition
R(V1, ξ) · P = 0. Then we have

R(V1, ξ)P (V4, V5)V6 − P (R(V1, ξ)V4, V5)V6 (28)

−P (V4, R(V1, ξ)V5)V6 − P (V4, V5)R(V1, ξ)V6 = 0

for any V1, V4, V5, V6 on Mn(LPS).
By fixing V4 = V6 = ξ in (28), we have

R(V1, ξ)P (ξ, V5)ξ − P (R(V1, ξ)ξ, V5)ξ (29)

−P (ξ,R(V1, ξ)V5)ξ − P (ξ, V5)R(V1, ξ)ξ = 0.

From (11), (19) and (24), we find

P (V1, V5)ξ = (1− A4

n− 1
)(η(V5)V1 − η(V1)V5), (30)
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P (ξ, V5)V1 = −(1− A4

n− 1
)η(V1)V5 + g(V1, V5)ξ −

1

n− 1
S(V1, V5)ξ. (31)

In view of (10), (30) and (31), after some steps calculation, (29) reduces to
S(V1, V5)ξ = A4g(V1, V5)ξ, which by taking the inner product with ξ and using
(20) gives

S(V1, V5) = (n− 1)g(V1, V5). (32)

On contracting (32), we obtain r = n(n− 1), which in view of (20) and (17), we

find Λ = (n−1)(2n−3)−a2

2 . Thus, we have

Theorem 5.2. If an Mn(LPS) admitting a ∗-ES satisfies the condition R(V1, ξ)·
P = 0. Then Mn(LPS) is an Einstein manifold and the ∗-ES is expanding,
steady or shrinking according to a2 < (n − 1)(2n − 3), = (n − 1)(2n − 3) or
> (n− 1)(2n− 3), respectively.

Further, we consider an Mn(LPS) admitting a ∗-ES that satisfies the condi-
tion S(ξ, V1) · P = 0. Then we have

S(V1, P (V4, V5)V6)ξ − S(ξ, P (V4, V5)V6)V1 + S(V1, V4)P (ξ, V5)V6 (33)

−S(ξ, V4)P (V1, V5)V6 + S(V1, V5)P (V4, ξ)V6 − S(ξ, V5)P (V4, V1)V6

+S(V1, V6)P (V4, V5)ξ − S(ξ, V6)P (V4, V5)V1 = 0

for all V1, V4, V5, V6 on Mn(LPS). Putting V4 = V6 = ξ in (33), we have

S(V1, P (ξ, V5)ξ)ξ − S(ξ, P (ξ, V5)ξ)V1 + S(V1, ξ)P (ξ, V5)ξ − S(ξ, ξ)P (V1, V5)ξ

+S(V1, V5)P (ξ, ξ)ξ − S(ξ, V5)P (ξ, V1)ξ + S(V1, ξ)P (ξ, V5)ξ − S(ξ, ξ)P (ξ, V5)V1 = 0,

which in view of (19), (30), (31) and η(P (ξ, V5)ξ) = 0 leads to

A4g(V1, V5)ξ + 2A4(1−
A4

n− 1
)η(V1)η(V5)ξ + (1− 2

A4

n− 1
)S(V1, V5)ξ = 0.

By taking the inner product of the foregoing equation with ξ then using (4), (6)
and (20) it follows that

S(V1, V5) = (n− 1)g(V1, V5). (34)

On contracting (34), we obtain r = n(n− 1), which with the relations (20) and

(17) gives Λ = (n−1)(2n−3)−a2

2 . Thus, we have

Theorem 5.3. If an Mn(LPS) admitting a ∗-ES satisfies the condition S(ξ, V1)·
P = 0. Then Mn(LPS) is an Einstein manifold and the ∗-ES is expanding,
steady or shrinking according to a2 < (n − 1)(2n − 3), = (n − 1)(2n − 3) or
> (n− 1)(2n− 3), respectively.
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6. Einstein semi-symmetric LP−Sasakian manifolds admitting
∗−Einstein solitons

Definition 6.1. An Mn(LPS) is called Einstein semi-symmetric if R · E = 0,
where E is the Einstein tensor given by

E(V1, V2) = S(V1, V2)−
r

n
g(V1, V2), (35)

where r is the scalar curvature of the manifold.

Let us consider an Mn(LPS) admitting a ∗-ES, which is Einstein semi-
symmetric, i. e., R · E = 0. Thus, we have

E(R(V1, V2)V3, V4) + E(V3, R(V1, V2)V4) = 0,

which in view of (35) takes the form

S(R(V1, V2)V3, V4) + S(V3, R(V1, V2)V4) =
r

n
{g(R(V1, V2)V3, V4) (36)

+g(V3, R(V1, V2)V4)}.
By putting V1 = V3 = ξ in (36), we have

S(R(ξ, V2)ξ, V4) + S(ξ,R(ξ, V2)V4) =
r

n
{g(R(ξ, V2)ξ, V4) + g(ξ,R(ξ, V2)V4)}.

By making the use of (10), (12) and (19), the foregoing equation leads to
S(V2, V4) = A4g(V2, V4), which by using (20) turns to

S(V2, V4) = (n− 1)g(V2, V4). (37)

On contracting (37), we obtain r = n(n − 1). Using this value of r in (20) and

using (17), we obtain Λ = (n−1)(2n−3)−a2

2 . Thus, we have

Theorem 6.2. Let an Einstein semi-symmetric Mn(LPS) admit a ∗−ES. Then
Mn(LPS) is an Einstein manifold and the ∗-ES is expanding, steady or shrinking
according to a2 < (n − 1)(2n − 3), = (n − 1)(2n − 3) or > (n − 1)(2n − 3),
respectively.

7. ∗−Einstein solitons in LP−Sasakian manifolds satisfying
(S(V1, V2) ·R)(V4, V5)V6 = 0

Let an Mn(LPS) admitting a ∗-ES satisfies (S(V1, V2) · R)(V4, V5)V6 = 0.
Then we have

S(V2, R(V4, V5)V6)V1 − S(V1, R(V4, V5)V6)V2 + S(V2, V4)R(V1, V5)V6

−S(V1, V4)R(V2, V5)V6 + S(V2, V5)R(V4, V1)V6 − S(V1, V5)R(V4, V2)V6

+S(V2, V6)R(V4, V5)V1 − S(V1, V6)R(V4, V5)V2 = 0,

which by taking the inner product with ξ takes the form

S(V2, R(V4, V5)V6)η(V1)− S(V1, R(V4, V5)V6)η(V2) + S(V2, V4)η(R(V1, V5)V6)

− S(V1, V4)η(R(V2, V5)V6) + S(V2, V5)η(R(V4, V1)V6)− S(V1, V5)η(R(V4, V2)V6)

+ S(V2, V6)η(R(V4, V5)V1)− S(V1, V6)η(R(V4, V5)V2) = 0. (38)
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Putting V4 = V6 = ξ in (38), then using (10)-(12) and (19) we find

S(V2, V5)η(V1) = S(V1, V5)η(V2) +A4g(V5, V1)η(V2)−A4g(V5, V2)η(V1).

Again putting V1 = ξ in the foregoing equation and using (4), (4), (19), we
obtain S(V2, V5) = −A4g(V2, V5)− 2A4η(V2)η(V5), which by using (20) turns to

S(V2, V5) = −(n− 1)g(V2, V5)− 2(n− 1)η(V2)η(V5). (39)

On contracting (39), we obtain r = −(n− 1)(n− 2). Thus, by virtue of (20) and

(17) we obtain Λ = −n−1+a2

2 . This helps us to state

Theorem 7.1. If an Mn(LPS) admitting a ∗-ES satisfies S(V1, ξ) ·R = 0, then
Mn(LPS) is an η-Einstein manifold and the soliton is always shrinking.

8. ∗−Einstein solitons in LP−Sasakian manifolds with torse-forming
vector field

Definition 8.1. A vector field U in an Mn(LPS) is said to be torse-forming
vector field if [29]

∇V1
U = fV1 + γ(V1)U, (40)

where f is a smooth function and γ is a 1-form.

Let us consider an Mn(LPS) admitting a ∗-ES, further considering the Reeb
vector field ξ as a torse-forming vector field. Thus, from (40) we have

∇V1
ξ = fV1 + γ(V1)ξ (41)

for any V1 on Mn(LPS).
Taking the inner product of (41) with ξ we lead to

g(∇V1ξ, ξ) = fη(V1)− γ(V1). (42)

Also from (8), we obtain

g(∇V1
ξ, ξ) = 0. (43)

Thus, from the last two equations we find γ = fη, and hence (41) turns to

∇V1
ξ = f(V1 + η(V1)ξ). (44)

Now, in view of (44), we have

(£ξg)(V1, V2) = 2f{g(V1, V2) + η(V1)η(V2)}. (45)

By virtue of (45), (3) turns to

S∗(V1, V2) = −(Λ− r

2
+ f)g(V1, V2)− fη(V1)η(V2),

which by using (18) yields

S(V1, V2) = −(Λ− r

2
+ f + n− 2)g(V1, V2)

+ag(V1, ϕV2)− (2n− 3 + f)η(V1)η(V2).
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By recalling (20) in the foregoing equation, we arrive at

S(V1, V2) = −(f + n− 2)g(V1, V2) + ag(V1, ϕV1) (46)

−(2n− 3 + f)η(V1)η(V2),

which is a generalized η−Einstein manifold.
On contracting (46), we obtain r = −(n − 1)(f + n − 3) + a2, and hence from

(17) and (20) we obtain Λ = − (n−1)f
2 . Thus, we have

Theorem 8.2. Let an Mn(LPS) admit a ∗-ES with a torse-forming vector field
ξ. Then M is a generalized η-Einstein manifold and the soliton is expanding,
steady or shrinking according to f < 0, = 0 or > 0, respectively.

9. Examples

We consider the 3-dimensional manifoldM3 = {(v1, v2, v3) ∈ R3}, where (v1, v2, v3)
are the standard coordinates in R3. Let ϱ1, ϱ2 and ϱ3 be the vector fields on M3

given by

ϱ1 = e−v3
∂

∂v1
, ϱ2 = e−v3(

∂

∂v1
+

∂

∂v2
), ϱ3 = − ∂

∂v3
= ξ.

Let g be the semi-Riemannian metric defined by

g(ϱk, ϱl) =


1, 1 ≤ k = l ≤ 2,

−1, k = l = 3,

0, 1 ≤ k ̸= l ≤ 3.

Let η be the 1-form on M defined by η(V1) = g(V1, ϱ3) for all V1 ∈ X(M3). Let
ϕ be the (1, 1) tensor field on M3 defined by

ϕϱ1 = −ϱ1, ϕϱ2 = −ϱ2, ϕϱ3 = 0.

By applying the linearity of ϕ and g, we have

η(ξ) = −1, ϕ2V1 = V1 + η(V1)ξ, η(ϕV1) = 0,

g(V1, ξ) = η(V1), g(ϕV1, ϕV2) = g(V1, V2) + η(V1)η(V2)

for V1, V2 ∈ χ(M3). Then we have

[ϱ1, ϱ2] = 0, [ϱ1, ϱ3] = −ϱ1 [ϱ2, ϱ3] = −ϱ2.

By using well-known Koszul’s formula, we can easily calculate

∇ϱ1
ϱ1 = −ϱ3, ∇ϱ1

ϱ2 = 0, ∇ϱ1
ϱ3 = −ϱ1,

∇ϱ2ϱ1 = 0, ∇ϱ2ϱ2 = −ϱ3, ∇ϱ2ϱ3 = −ϱ2,

∇ϱ3
ϱ1 = 0, ∇ϱ3

ϱ2 = 0, ∇ϱ3
ϱ3 = 0.

It can be easily shown that M3 is an LP -Sasakian manifold. By using the above
results, one can easily obtain the following components of the curvature tensor:

R(ϱ1, ϱ2)ϱ2 = ϱ1, R(ϱ1, ϱ3)ϱ3 = −ϱ1, R(ϱ1, ϱ2)ϱ1 = −ϱ2,
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R(ϱ2, ϱ3)ϱ3 = −ϱ2, R(ϱ1, ϱ3)ϱ1 = −ϱ3, R(ϱ2, ϱ3)ϱ2 = −ϱ3.

From these curvature tensors, we can easily calculate

S(ϱ1, ϱ1) = S(ϱ2, ϱ2) = 2, S(ϱ3, ϱ3) = −2. (47)

Thus, we find r = 6. Putting V1 = V2 = ξ in (18) and using the values r = 6
and S(ϱ3, ϱ3) = −2, we obtain Λ = 3. Thus, an expanding case of ∗−Einstein
solitons is verified by the given example.
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