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PARACOMPACTNESS IN COC-OPEN SETS
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Abstract. As a new topological property, we introduce paracompact space
via co-compact sets. We give some characterizations and implications the-

orems.
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1. Introduction

The concept of paracompactness is an important concept in topology since
it gives a weaker form of compactness, so the focus on it open wide horizons in
topology. A new type of open set defined in [4] called coc-compact open set, a
subset A of a topological space X is called coc-open set if A is a union of sets of
the form V − C, when V is open set and C is a compact subset of X.

The family of all coc-open sets of topological space (X, τ) forms a topology
denoted by (X, τk).

In this paper, no separation axioms to be assumed, for a subset A of X, A
coc

and
intcoc(A) will denote the closure of A and the interior of A in τk, respectively.

For more about coc-compact sets and other topological properties we refer
the reader to [1, 2, 3, 7, 5, 6]

First, we need to give the following definitions and theorems :

Definition 1.1. [4] A subset A of a topological space X is called co-compact
open set (notation: coc-open) if for every x ∈ A, there exists an open set U ⊆ X
and a compact subset K of X such that x ∈ U −K ⊆ A. The complement of
a coc-open subset is called coc-closed. The family of all coc-open subsets of a
topological space (X, τ) will be denoted by τk.
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Definition 1.2. [3] A topological space X is called coc-T2-space if and only if
for all x, y ∈ X with x ̸= y ∈ X, there exist U, V ∈ τk such that x ∈ U, y ∈ V
with U ∩ V = ϕ.

Definition 1.3. [4] A family U ⊆ X is coc-open cover of X if U covers X and
U is a subfamily of τk.

Definition 1.4. [4] A space (X, τ) is coc-compact if every coc-open cover has
a finite subcover.

Definition 1.5. A space (X, τ) is coc-Lindelöf if every coc-open cover has a
countable subcover.

Definition 1.6. A family U of (X, τ) is called coc-locally -finite (coc-point-
finite) if for each x ∈ X, there coc-open set of x which meets finite members of
U (x belongs to finite members of U).
Definition 1.7. A coc-T2-space (X, τ) is called coc-paracompact (coc-meta
compact) if every coc-open cover U of X has a coc-locally finite (coc-point finite)
coc-open refinement.

Definition 1.8. A coc-T2-space (X, τ) is called coc-paralindelöf (coc-metaLindelöf)
if every coc-open cover has a coc-locally countable (coc-point countable ) coc-
open refinement.

Clearly, coc-compact ⇒ coc-paracompact ⇒ coc-metacompact ⇒ coc-meta
Lindelöf and coc-paracompact ⇒ coc-paralindelöf.

Most of the following definitions and theorems are taken from [5].

Definition 1.9. [5] A subset A of a topological space X is coc-regular open if

intcoc(A
coc

) = A, the complement of a coc-regular open is said to be coc-regular

closed, or A = intcoc(A)
coc

.

Definition 1.10. [5] A coc-open cover U = {Uα|α ∈ ∆} of X is called coc-
regular cover, if for each α ∈ ∆ there exists a coc-regular closed set Fα such that
Fα ⊆ Uα and X =

⋃
{intcoc(Fα)|α ∈ ∆}.

Definition 1.11. [5] A space (X, τ) is coc-almost-compact if every coc-open
cover of X has a finite collection such that the coc-closure of the union is X.

Definition 1.12. A space (X, τ) is coc-almost-Lindelöf if every coc-open cover
of X has a countable collection such that the coc-closure of the union is X.

Definition 1.13. [5] A space (X, τ) is coc-weakly-compact if every coc-regular
cover of X has a finite collection such that the coc-closure of the union is X.

Definition 1.14. A space (X, τ) is coc-weakly-Lindelöf if every coc-regular
cover of X has a countable collection such that the coc-closure of the union
is X.

Definition 1.15. [5] A space (X, τ) is coc-nearly-compact if every coc-open
cover of X by coc-regular open sets has a finite subcover.
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Definition 1.16. A space (X, τ) is coc-nearly-Lindelöf if every coc-open cover
of X by coc-regular open sets has a countable subcover.

And it is clear that coc-compact⇒ coc-nearly-compact⇒ coc-almost-compact
⇒ coc-weakly-compact, also coc-nearly-Lindelöf ⇒ coc-almost-Lindelöf ⇒ coc-
weakly-Lindelöf.

Definition 1.17. [5] A space X is called coc-R-compact if every coc-regular
cover of X has a finite subcover.

Theorem 1.18. A coc-almost-compact space X is coc-R-compact space.

Definition 1.19. [5] A space X is said to be coc-almost regular if for each
coc-regular closed F and x ∈ X−F , there exist disjoint coc-open sets U, V such
that F ⊆ U and x ∈ V .

Theorem 1.20. [5] If a space X is coc-weakly-compact and coc-almost-regular,
then X is coc-nearly-compact.

Corollary 1.21. [5] The following are equivalent for a coc-almost-regular space:

(1) X is coc-nearly-compact,
(2) X is coc-almost-compact,
(3) X is coc-R-compact,
(4) X is coc-weakly-compact.

2. Coc-paracompact Space

Theorem 2.1. Every coc-closed subspace of a coc-paracompact X is coc-paracompact.

Proof. Let A be coc-closed subset of X and U = {Uα|α ∈ ∆} be coc-open cover
of A. Then U ∪ {X − A} is a coc-open cover of X which has a coc-open, coc-
locally finite refinement, say V, now V ∩ A is the needed coc-open coc-locally
finite refinement of A ( clearly (V ∩A) ∩ (X −A) = ϕ), hence the result. □

Corollary 2.2. Every closed subspace of a coc-paracompact X is coc-paracompact.

Definition 2.3. A space (X, τk) is T3-space if for a coc-closed set A and x ∈ A,
there exist disjoint U, V ∈ τk with A ⊂ U, x ∈ V .

Definition 2.4. A space (X, τk) is normal space if for disjoint coc-closed set
A,B, there exist disjoint U, V ∈ τk with A ⊆ U,B ⊆ V .

Lemma 2.5. Let (X, τ) be a coc-paracompact space. Then (X, τk) is T3− space
and hence coc-almost regular space.

Proof. Let A be coc-closed subset of X and x ∈ X − A. For each y ∈ A,
there exist disjoint coc-open sets Ux, Vy contain x, y respectively. Now, the
collection {Ux|x ∈ A} ∪ {X − A} forms a coc-open cover of X, which has coc-
locally-finite coc-open refinement V = {Vγ |γ ∈ Γ}. Let VA = {Vγ |Vγ ∩ A ̸= ϕ},
and V =

⋃
{Vγ |Vγ ∈ VA}, then A ∈ V and y /∈

⋃
γ∈Γ

VΓ
coc

= V
coc

, hence the

result. □
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Definition 2.6. A set A ⊆ X is called coc-dense set if A
coc

= X.

Theorem 2.7. For a coc-paracompact space X, the following are equivalent:

(1) X has coc-dense coc-compact space,
(2) X is coc-weakly compact space,
(3) X is coc-almost compact space,
(4) X is coc-R-compact space,
(5) X is coc-compact space.

Proof. The proof comes from the lemma 2.5 and corollary 1.21, and the fact
that (see [5]) if (X, τk) is T3-space with X is coc-weakly compact space, then X
is coc-compact space. □

Theorem 2.8. Let X be coc-paralindelöf space. Then the following are equiva-
lent:

(1) X has coc-dense coc-Lindelöf space,
(2) X is coc-weakly-Lindelöf space,
(3) X is coc-almost-Lindelöf space,
(4) X is coc-Lindelöf space.

3. Coc-countable Paracompactness

In this section we introduce a new type of paracompact in coc-open sets and
gives equivalent statement to this notion.

Definition 3.1. A coc-T2-space (X, τ) is called coc-countably paracompact if
every countable coc-open cover has a coc-locally finite coc-open refinement.

The following lemma is necessary for the next theorem.

Lemma 3.2. Let (X, τk) be a normal space. Then for all countable coc-point

finite cover G of X, there exist a coc-open refinement cover W such that Wγ
coc ⊆

G for some G ∈ G.

Proof. Let G = {Gm|m ∈ ∆,∆ is countable set} be coc-locally finite cover for
a normal space (X, τk).
Define

E1 = X −
⋃
m>1

Gm,

clearly E1 is coc-closed set in X and E1 ⊆ G1, but (X, τk) is normal space, so
there exist coc-open set W1 such that

E1 ⊆ W1 ⊆ W1
coc ⊆ G1.

In general, we can define

Eα = X − (
⋃
s<α

Ws)(
⋃
t>α

Gt),
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clearly Eα is coc-closed set and Eα ⊆ Gα, again by normality of (X, τk), there
exist coc-open set Wα with

Eα ⊆ Wα ⊆ Wα
coc ⊆ Gα.

Indeed, the family W = {Wα|α ∈ ∆} is coc-open refinement cover. For that
let x ∈ X and x meets finite members of G say Gα1 , Gα2 , . . . , Gαn , let α =
max{α1, . . . , αn}, then x /∈ Gt for t > α and if x /∈ Ws for any s < α, then
x ∈ Eα ⊆ Wα, so x ∈ Vs for some s ≤ α, hence V is refinement coc-open
cover. □

Definition 3.3. A set A in a topological space is called coc-Gδ−set if it inter-
section of coc-open set, the complement of coc-Gδ−set is called coc− Fσ−set.

Theorem 3.4. Let (X, τk) be a normal space. Then the following are equivalent:

1. X is coc-countably paracompact,
2. Every coc-open cover has coc-locally finite coc-open refinement,
3. Every countable coc-open cover U has a refinement V such that V

coc ⊆ U
for some U ∈ U ,

4. Given a decreasing sequence of coc-closed F = {Fα|α ∈ ∆} with
⋂

α∈∆

Fα =

ϕ, then there exist a sequence of coc-open family G = {Gα|α ∈ ∆} with⋂
α∈∆

Gk = ϕ such that Fα ⊆ Gα,

5. Given a decreasing sequence of coc-closed family F = {Fα|α ∈ ∆} with⋂
α∈∆

Fα = ϕ, there exist a sequence of coc-closed (coc-Gδ) family A =

{Aα|α ∈ ∆} with
⋂

α∈∆

Aα = ϕ and Fα ⊆ Aα.

Proof. (1) → (2) Clearly, since coc-locally finite coc-open cover is coc-point finite
coc-open cover.
(2) → (3) Let U = {Uα|α ∈ ∆} be a countable coc-open cover of X, so for
x ∈ X, by (2) , there is a coc-locally finite coc-open refinement V such that x
belongs to finite members of V. For V ∈ V and let UV ∈ U be the first one of U
that contains V . Let

Gα =
⋂

UV =Uα

V,

then Gα ⊆ Uα.
For the collection G = {Gα|α ∈ ∆}, G is coc-point finite coc-open cover, and so

by Lemma 3.2, there exist a coc-open cover W such that W
coc ⊆ U for some

U ∈ U as required.
(3) → (4) Let F = {Fα|α ∈ ∆} be a countable coc-closed family with Fα+1 ⊂ Fα

and
⋂

α∈∆

Fα = ϕ.

Define Uα = X − Fα, then U = {Uα|α ∈ ∆} be countable coc-open cover,
therefore by (3) there exist a coc-open refinement V with Vα ⊆ Uα.
Finally define

Gα = X − Vα
coc

,
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then ⋃
α∈∆

Vα
coc

= X,

so ⋂
α∈∆

Gα = ϕ,

and
G = {Gα|α ∈ ∆}

is coc-open cover of X, since Vα
coc ⊆ U , so we have Fα ⊆ Gα.

(4) → (5) Let F = {Fα|α ∈ ∆} be a coc-closed family satisfies (4), so there
exists a sequence G = {Gα|α ∈ ∆} with Fα ⊆ Gα and

⋂
α∈∆

Gα = ϕ, since (X, τk)

is normal, there exists a continuous function ϕα(x) : (X, τk) → (R, ταu ) such that
ϕα(x) = 0 for x ∈ Fα and ϕα(x) = 1 for x /∈ Gα.
Let

Gαm
= {x|ϕα(x) <

1

m
},

and
Aα =

⋂
m

Gαm
= {x|ϕα(x) = 0},

then Gαm is open set and hence coc-open set, and Aα closed and hence coc-
closed set with Fα ⊂ Aα ⊂ Gα and

⋂
α∈∆

Aα =
⋂

α∈∆

Gα = ϕ.

(5) → (1) Let U = {Uα|α ∈ ∆} be countable coc-open cover and let Fα =
X−

⋃
k≤α

Uk, so F = {Fα|α ∈ ∆} is coc-closed decreasing sequence with
⋂
α
Fα = ϕ

(since
⋃

α∈∆

Uα = X), so there exists a sequence of coc-closed (coc-Gδ) family

A = {Aα|α ∈ ∆} with Fβ ⊆ Aβ and
⋂

Aβ = ϕ, then X − Aβ is coc-Fα set, so
we write X −Aβ =

⋃
α
Bβα

, where Bβα
is coc-closed, but (X, τk) is normal, so

Bβα ⊆ intcoc(Bβ,α+1).

Define
Hβα

= intcoc(Bβα
),

then
Hβα

⊆ Bβα
⊆ Hβ,α+1

and
X −Aβ =

⋃
Hβα ,

hence
Bβα

⊂ X −Aβ ⊂ X − Fβ =
⋃
k≤β

Uk.

Let
Vα = Uα −

⋃
β<α

Bβα
,
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then Vα is coc-open set. To end the proof let V = {Vα|α ∈ ∆}. (1) V covers
X. For β < α, Bβα

⊂
⋃

k≤β

Uk ⊂
⋃

k<α

Uk, hence
⋃

β<α

Bβα
⊂

⋃
k<α

Uk, and Vα ⊇

Uα −
⋃

k<α

Uk. So for x ∈ X, there exists α ∈ ∆ with x ∈ Uα and hence x ∈ Vα.

(2) V is refinement for U , it is clear. (3) V coc-locally finite coc-open. Let x ∈ X,
for some β ∈ ∆, x /∈ Aβ and for some m, x ∈ Hβk

, then if α > β and α > k,
Hβk

⊂ Bβα and hence Hβk
∩ Vα = ϕ. So the coc-open set Hβk

contains x meets
finite members of V as required.

□
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