References
- Yadav K, Lewis RJ. Immortal time bias in observational studies. JAMA 2021;325:686-687 https://doi.org/10.1001/jama.2020.9151
- Carin L, Pencina MJ. On deep learning for medical image analysis. JAMA 2018;320:1192-1193 https://doi.org/10.1001/jama.2018.13316
- Halpern EF. Behind the numbers: inverse probability weighting. Radiology 2014;271:625-628 https://doi.org/10.1148/radiol.14140035
- Hong P, Lee JS, Lee KS. Pulmonary heterotopic ossification simulating a pulmonary hamartoma: imaging and pathologic findings and differential diagnosis. Korean J Radiol 2022;23:688-690 https://doi.org/10.3348/kjr.2022.0156
- Zhang C, Groezinger G, Kreisselmeier KP, Othman AE, Martirosian P, Pohmann R, et al. Monitoring pulmonary thrombectomy: what information can be gained with arterial spin labeling MRI? Korean J Radiol 2022;23:931-934 https://doi.org/10.3348/kjr.2022.0159
- Ashoor A, Shephard J, Lissidini G, Nicosia L. Axillary adenopathy in patients with recent Covid-19 vaccination: a new diagnostic dilemma. Korean J Radiol 2021;22:2124-2126 https://doi.org/10.3348/kjr.2021.0635
- Lane DL, Neelapu SS, Xu G, Weaver O. COVID-19 vaccine-related axillary and cervical lymphadenopathy in patients with current or prior breast cancer and other malignancies: cross-sectional imaging findings on MRI, CT, and PET-CT. Korean J Radiol 2021;22:1938-1945 https://doi.org/10.3348/kjr.2021.0350
- Fu B, Hu J, Chen T, Fu X. Tracheal membrane rupture as the cause of pneumomediastinum in a patient with COVID-19. Korean J Radiol 2022;23:488-490 https://doi.org/10.3348/kjr.2021.0947
- Kim JY, Kim WS, Lee KS, Je BK, Park JE, Ryu YJ, et al. Posterior lung herniation in pulmonary agenesis and aplasia: chest radiograph and cross-sectional imaging correlation. Korean J Radiol 2021;22:1690-1696 https://doi.org/10.3348/kjr.2021.0155