참고문헌
- Abe T, Hirohata M, Tanaka N, Uchiyama Y, Kojima K, Fujimoto K, et al. Clinical benefits of rotational 3D angiography in endovascular treatment of ruptured cerebral aneurysm. AJNR Am J Neuroradiol 2002;23:686-688
- Anxionnat R, Bracard S, Ducrocq X, Trousset Y, Launay L, Kerrien E, et al. Intracranial aneurysms: clinical value of 3D digital subtraction angiography in the therapeutic decision and endovascular treatment. Radiology 2001;218:799-808 https://doi.org/10.1148/radiology.218.3.r01mr09799
- van Rooij WJ, Sprengers ME, de Gast AN, Peluso JP, Sluzewski M. 3D rotational angiography: the new gold standard in the detection of additional intracranial aneurysms. AJNR Am J Neuroradiol 2008;29:976-979 https://doi.org/10.3174/ajnr.A0964
- Guberina N, Lechel U, Forsting M, Monninghoff C, Dietrich U, Ringelstein A. Dose comparison of classical 2-plane DSA and 3D rotational angiography for the assessment of intracranial aneurysms. Neuroradiology 2016;58:673-678 https://doi.org/10.1007/s00234-016-1671-4
- Schueler BA, Kallmes DF, Cloft HJ. 3D cerebral angiography: radiation dose comparison with digital subtraction angiography. AJNR Am J Neuroradiol 2005;26:1898-1901
- Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012;41:1-322 https://doi.org/10.1016/j.icrp.2012.02.001
- Ki HJ, Kim BS, Kim JK, Choi JH, Shin YS, Choi Y, et al. Low-dose 3D rotational angiography in measuring the size of intracranial aneurysm: in vitro feasibility study using aneurysm phantom. Neurointervention 2021;16:59-63 https://doi.org/10.5469/neuroint.2020.00437
- Ki HJ, Kim BS, Kim JK, Choi JH, Shin YS, Choi Y, et al. Low-dose three-dimensional rotational angiography for evaluating intracranial aneurysms: analysis of image quality and radiation dose. Korean J Radiol 2022;23:256-263 https://doi.org/10.3348/kjr.2021.0162
- Pearl MS, Torok C, Katz Z, Messina SA, Blasco J, Tamargo RJ, et al. Diagnostic quality and accuracy of low dose 3D-DSA protocols in the evaluation of intracranial aneurysms. J Neurointerv Surg 2015;7:386-390 https://doi.org/10.1136/neurintsurg-2014-011137
- Schneider T, Wyse E, Pearl MS. Analysis of radiation doses incurred during diagnostic cerebral angiography after the implementation of dose reduction strategies. J Neurointerv Surg 2017;9:384-388 https://doi.org/10.1136/neurintsurg-2015-012204
- Kim DJ, Park MK, Jung DE, Kang JH, Kim BM. Radiation dose reduction without compromise to image quality by alterations of filtration and focal spot size in cerebral angiography. Korean J Radiol 2017;18:722-728 https://doi.org/10.3348/kjr.2017.18.4.722
- Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. Practical techniques for reducing radiation exposure during cerebral angiography procedures. J Neurointerv Surg 2015;7:141-145 https://doi.org/10.1136/neurintsurg-2013-010982
- Soderman M, Holmin S, Andersson T, Palmgren C, Babic D, Hoornaert B. Image noise reduction algorithm for digital subtraction angiography: clinical results. Radiology 2013;269:553-560 https://doi.org/10.1148/radiol.13121262
- Song Y, Han S, Kim BJ, Oh SH, Kim JS, Kim TI, et al. Low-dose fluoroscopy protocol for diagnostic cerebral angiography. Neurointervention 2020;15:67-73 https://doi.org/10.5469/neuroint.2020.00129
- Song Y, Han S, Kim BJ, Oh SH, Kim JS, Kim TI, et al. Feasibility of low-dose digital subtraction angiography protocols for the endovascular treatment of intracranial dural arteriovenous fistulas. Neuroradiology 2021;63:267-273 https://doi.org/10.1007/s00234-020-02537-2
- Anam C, Fujibuchi T, Toyoda T, Sato N, Haryanto F, Widita R, et al. The impact of head miscentering on the eye lens dose in CT scanning: phantoms study. J Phys: Conf Ser 2019;1204:012022
- Kim JS, Park BR, Yoo J, Ha WH, Jang S, Jang WI, et al. Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity. Nucl Eng Technol 2022;54:479-485 https://doi.org/10.1016/j.net.2021.08.016
- Oonsiri P, Kingkaew S, Vannavijit C, Suriyapee S. Investigation of the dosimetric characteristics of radiophotoluminescent glass dosimeter for high-energy photon beams. J Radiat Res Appl Sci 2019;12:65-71 https://doi.org/10.1080/16878507.2019.1594092
- Lee KB, Goo HW. Quantitative image quality and histogram-based evaluations of an iterative reconstruction algorithm at low-to-ultralow radiation dose levels: a phantom study in chest CT. Korean J Radiol 2018;19:119-129 https://doi.org/10.3348/kjr.2018.19.1.119
- Otgonbaatar C, Ryu JK, Shin J, Woo JY, Seo JW, Shim H, et al. Improvement in image quality and visibility of coronary arteries, stents, and valve structures on CT angiography by deep learning reconstruction. Korean J Radiol 2022;23:1044-1054 https://doi.org/10.3348/kjr.2022.0127
- Tan S, Soulez G, Diez Martinez P, Larrivee S, Stevens LM, Goussard Y, et al. Coronary stent artifact reduction with an edge-enhancing reconstruction kernel - a prospective cross-sectional study with 256-slice CT. PLoS One 2016;11:e0154292
- Guberina N, Dietrich U, Forsting M, Ringelstein A. Comparison of eye-lens doses imparted during interventional and non-interventional neuroimaging techniques for assessment of intracranial aneurysms. J Neurointerv Surg 2018;10:168-170 https://doi.org/10.1136/neurintsurg-2016-012970
- Sandborg M, Rossitti S, Pettersson H. Local skin and eye lens equivalent doses in interventional neuroradiology. Eur Radiol 2010;20:725-733 https://doi.org/10.1007/s00330-009-1598-9
- Bolch WE, Dietze G, Petoussi-Henss N, Zankl M. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures. Ann ICRP 2015;44(1 Suppl):91-111 https://doi.org/10.1177/0146645314562320
- Pearl MS, Torok CM, Messina SA, Radvany M, Rao SN, Ehtiati T, et al. Reducing radiation dose while maintaining diagnostic image quality of cerebral three-dimensional digital subtraction angiography: an in vivo study in swine. J Neurointerv Surg 2014;6:672-676 https://doi.org/10.1136/neurintsurg-2013-010914
- Shaffiq Said Rahmat SM, Abdul Karim MK, Che Isa IN, Abd Rahman MA, Noor NM, Hoong NK. Effect of miscentering and low-dose protocols on contrast resolution in computed tomography head examination. Comput Biol Med 2020;123:103840
- Habibzadeh MA, Ay MR, Asl AR, Ghadiri H, Zaidi H. Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Med 2012;28:191-199 https://doi.org/10.1016/j.ejmp.2011.06.002