DOI QR코드

DOI QR Code

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha (Department of Mathematics, Al Zaytoonah University of Jordan, Nonlinear Dynamics Research Center (NDRC), Ajman University) ;
  • Nashat Alamarat (Department of Mathematics, Faculty of Science and Technology, Irbid National University) ;
  • Shameseddin Alshorm (Department of Mathematics, Al Zaytoonah University of Jordan) ;
  • O. Y. Ababneh (Department of Mathematics, Zarqa University) ;
  • Shaher Momani (Department of Mathematics, The University of Jordan, Nonlinear Dynamics Research Center (NDRC), Ajman University)
  • 투고 : 2022.09.04
  • 심사 : 2022.11.19
  • 발행 : 2023.06.15

초록

In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

키워드

참고문헌

  1. P. Agarwal, J. Choi, and R.B. Paris, Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., 8(5) (2015), 451-466.  https://doi.org/10.22436/jnsa.008.05.01
  2. P. Agarwal and J. Choi, Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53(5) (2016), 1183-1210.  https://doi.org/10.4134/JKMS.j150458
  3. R.B. Albadarneh, I.M. Batiha, A. Adwai, N. Tahat, and A.K. Alomari, Numerical approach of Riemann-Liouville fractional derivative operator, Int. J. Electr. Comput. Eng., 11(6) (2021), 5367-5378.  https://doi.org/10.11591/ijece.v11i6.pp5367-5378
  4. R.B. Albadarneh, I.M. Batiha and M. Zurigat, Numerical solutions for linear fractional differential equations of order 1 < α < 2 using finite difference method, Int. J. Math. Comput. Sci., 16(1) (2016), 103-111. 
  5. I.M. Batiha, S. Alshorm, A. Al-Husban, R. Saadeh, G. Gharib, and S. Momani, The n-Point Composite Fractional Formula for Approximating Riemann-Liouville Integrator, Symmetry, 15(4) (2023), 938. 
  6. I.M. Batiha, S. Alshorm, I.H. Jebril and M. Abu Hammad, A Brief Review about Fractional Calculus, Int. J. Open Probl. Compt. Math., 15(4) (2022). 
  7. I.M. Batiha, S. Alshorm, I. Jebril, A. Zraiqat, Z. Momani and S. Momani, Modified 5-point fractional formula with Richardson extrapolation, AIMS Math, 8 (2023), 9520-9534. 
  8. I.M. Batiha, L. Ben Aoua, T.-E. Oussaeif, A. Ouannas, S. Alshorman, I.H. Jebril and S. Momani, Common Fixed Point Theorem in Non-Archimedean Menger PM-Spaces Using CLR Property with Application to Functional Equations, IAENG Int. J. Appl. Math., 53(1) (2023), 1-9. 
  9. I.M. Batiha, S. Alshorm, A. Ouannas, S. Momani, O. Ababneh and M. Albdareen. Modified Three-Point Fractional Formulas with Richardson Extrapolation, Mathematics., 10(19) (2022), 3489. 
  10. I.M. Batiha, R. El-Khazali, A. AlSaedi and S. Momani, The general solution of singular fractional-order linear time-invariant continuous systems with regular pencils, Entropy, 20(6) (2018), 400. 
  11. M. Bezziou, I. Jebril and Z. Dahmani, A new nonlinear Duffing system with sequential fractional derivatives, Chaos, Solitons & Fractals, 151 (2021), 111247. 
  12. A. Carpinteri and F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer, Vienna, New York, (2014). 
  13. V.S. Erturk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215(1) (2008), 142-151.  https://doi.org/10.1016/j.cam.2007.03.029
  14. G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51(9-10) (2006), 1367-1376.  https://doi.org/10.1016/j.camwa.2006.02.001
  15. A. Kilicman and Z.A.A. Zhour, Kronecker operational matrices for fractional calculus and some applications, Appl. Math. Comput., 187(1) (2007), 250-265.  https://doi.org/10.1016/j.amc.2006.08.122
  16. S.S. Ray and R.K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167(1) (2005), 561-571.  https://doi.org/10.1016/j.amc.2004.07.020
  17. A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59(3) (2010), 1326-1336.  https://doi.org/10.1016/j.camwa.2009.07.006
  18. I. Talbi, A. Ouannas, A.-A. Khennaoui, A. Berkane, I.M. Batiha, G. Grassi and V.-T. Pham, Different dimensional fractional-order discrete chaotic systems based on the Caputo h-difference discrete operator: dynamics, control, and synchronization, Adv. Differ. Equ., 2020(1) (2020), 1-15.  https://doi.org/10.1186/s13662-019-2438-0
  19. M. Zurigat, S. Momani and A. Al-Masarwah, Homotopy analysis method for solving fractional IVPs, Commun. Nonlinear Sci. Numer. Simul., 15(9) (2010), 2293-2302.  https://doi.org/10.1016/j.cnsns.2009.09.019
  20. M. Zurigat and S. Momani, A new algorithm for calculating Adomian polynomials for nonlinear operators, Commun. Nonlinear Sci. Numer. Simul., 17(1) (2012), 2-7. 
  21. M. Zurigat, S. Momani and A.-M. Wazwaz, Solving a generalized Hirota-Satsuma coupled KdV equation using homotopy analysis method, J. Math. Anal. Appl., 414(2) (2014), 705-715. 
  22. A. Zraiqat, S.K. Paikray and H. Dutta, A certain class of deferred weighted statistical B-summability involving (p,q)-integers and analogous approximation theorems, Filomat, 33(5) (2019), 1425-1444. https://doi.org/10.2298/FIL1905425Z