DOI QR코드

DOI QR Code

Fingernail electron paramagnetic resonance dosimetry protocol for localized hand exposure accident

  • Jae Seok Kim (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Byeong Ryong Park (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Minsu Cho (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Won Il Jang (National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences) ;
  • Yong Kyun Kim (Department of Nuclear Engineering, University of Hanyang)
  • Received : 2021.11.16
  • Accepted : 2022.08.29
  • Published : 2023.01.25

Abstract

Exposure to ionizing radiation induces free radicals in human nails. These free radicals generate a radiation-induced signal (RIS) in electron paramagnetic resonance (EPR) spectroscopy. Compared with the RIS of tooth enamel samples, that in human nails is more affected by moisture and heat, but has the advantages of being sensitive to radiation and easy to collect. The fingernail as a biological sample is applicable in retrospective dosimetry in cases of localized hand exposure accidents. In this study, the dosimetric characteristics of fingernails were analyzed in fingernail clippings collected from Korean donors. The dose response, fading of radiation-induced and mechanically induced signals, treatment method for evaluation of background signal, minimum detectable dose, and minimum detectable mass were investigated to propose a fingernail-EPR dosimetry protocol. In addition, to validate the practicality of the protocol, blind and field experiments were performed in the laboratory and a non-destructive testing facility. The relative biases in the dose assessment result of the blind and field experiments were 8.43% and 21.68% on average between the reference and reconstructed doses. The results of this study suggest that fingernail-EPR dosimetry can be a useful method for the application of retrospective dosimetry in cases of radiological accidents.

Keywords

Acknowledgement

This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT (MSIT), Republic of Korea (No.50445-2021 and No.50535-2021).

References

  1. International Commission on Radiation Unit and Measurements, (ICRU), Method for initial-phase Assessment of individual doses following acute exposure to ionizing radiation, ICRU 94 (2019).
  2. G.A. Alexander, et al., BiodosEPR-2006 Meeting: acute dosimetry consensus committee recommendations on biodosimetry applications in events involving uses of radiation by terrorists and radiation accidents, Radiat. Meas. 42 (2007) 972-996, https://doi.org/10.1016/j.radmeas.2007.05.035.
  3. L. Waldner, et al., The 2019-2020 EURADOS WG10 and RENEB field test of retrospective dosimetry methods in a small-scale incident involving ionizing radiation, Radiat. Res. 195 (2021) 253-264, https://doi.org/10.1667/RADE-20-00243.
  4. F. Trompier, C. Bassinet, A. Wieser, C.D. De Angelis, D. Viscomi, P. Fattibene, Radiation-induced signals analysed by EPR spectrometry applied to fortuitous dosimetry, Ann. Ist. Super Sanita 45 (2009) 287-296.
  5. M. Sans Merce, et al., Extremity exposure in nuclear medicine: preliminary results of a European study, Radiat. Protect. Dosim. 144 (2011) 515-520, https://doi.org/10.1093/rpd/ncq574.
  6. S. Papierz, Z. Kaminski, M. Adamowicz, M. Zmyslony, Assessment of individual dose equivalents Hp(0.07) of medical staff occupationally exposed to ionizing radiation in 2012, Med. Pr. 65 (2014) 167-171, https://doi.org/10.13075/mp.5893.2014.013.
  7. D. Adliene, B. Griciene, K. Skovorodko, J. Laurikaitiene, J. Puiso, Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers, Environ. Res. 183 (2020), 109144, https://doi.org/10.1016/j.envres.2020.109144.
  8. F. Trompier, F. Queinnec, E. Bey, T. De Revel, J.J. Lataillade, I. Clairand, M. Benderitter, J.F. Bottollier-Depois, EPR retrospective dosimetry with fingernails: report on first application cases, Health Phys. 106 (2014) 798-805, https://doi.org/10.1097/HP.0000000000000110.
  9. A. Romanyukha, F. Trompier, R.A. Reyes, D.M. Christensen, C.J. Iddins, S.L. Sugarman, Electron paramagnetic resonance radiation dose assessment in fingernails of the victim exposed to high dose as result of an accident, Radiat. Environ. Biophys. 53 (2014) 755-762, https://doi.org/10.1007/s00411-014-0553-6.
  10. F. Trompier, A. Romanyukha, R. Reyes, H. Vezin, F. Queinnec, D. Gourier, State of the art in nail dosimetry: free radicals identification and reaction mechanisms, Radiat. Environ. Biophys. 53 (2014) 291-303, https://doi.org/10.1007/s00411-014-0512-2.
  11. A. Marciniak, B. Ciesielski, M. Juniewicz, A. Prawdzik-Dampc, M. Sawczak, The effect of sunlight and UV lamps on EPR signal in nails, Radiat. Environ. Biophys. 58 (2019) 287-293, https://doi.org/10.1007/s00411-019-00777-2.
  12. X. He, et al., Development and validation of an ex vivo electron paramagnetic resonance fingernail biodosimetric method, Radiat. Protect. Dosim. 159 (2014) 172-181, https://doi.org/10.1093/rpd/ncu129.
  13. C.A.B. Gonzales, J.E. Tano, H. Yasuda, An attempt to reduce the background free radicals in fingernails for monitoring accidental hand exposure of medical workers, Appl. Sci. 10 (2020) 1-12, https://doi.org/10.3390/app10248949.
  14. M.C.R. Symons, H. Chandra, J.L. Wyatt, Electron paramagnetic resonance spectra of irradiated finger-nails: a possible measure of accidental exposure, Radiat. Protect. Dosim. 1 (1995) 11-15, https://doi.org/10.1093/oxfordjournals.rpd.a082591.
  15. G. Strzelczak, M. Sterniczuk, J. Sadlo, M. Kowalska, J. Michalik, EPR study of γ-irradiated feather keratin and human fingernails concerning retrospective dose assessment, Nukleonika 58 (2013) 505-509.
  16. S. Hirota, C.A.B. Gonzales, H. Yasuda, Behavior of the electron spin resonance signals in X-ray irradiated human fingernails for the establishment of a dose reconstruction procedure, J. Radiat. Res. 62 (2021) 812-824, https://doi.org/10.1093/jrr/rrab027.
  17. A. Romanyukha, F. Trompier, R.A. Reyes, M.A. Melanson, EPR measurements of fingernails in Q-band, Radiat. Meas. 46 (2011) 888-892, https://doi.org/10.1016/j.radmeas.2011.04.004.
  18. F. Trompier, L. Kornak, C. Calas, A. Romanyukha, B. Leblanc, C.A. Mitchell, H.M. Swartz, I. Clairand, Protocol for emergency EPR dosimetry in fingernails, Radiat. Meas. 42 (2007) 1085-1088, https://doi.org/10.1016/j.radmeas.2007.05.024.
  19. J.S. Kim, et al., Measurement uncertainty analysis of radiophotoluminescent glass dosimeter reader system based on GD-352M for estimation of protection quantity, Nucl. Eng. Technol. 54 (2) (2021) 479-485, https://doi.org/10.1016/j.net.2021.08.016.
  20. H. Choi, S.A. Choi, B. Lee, Preliminary study of water contents and signal behavior in fingernail/EPR dosimetry, J. Radiation Protect. Res. 38 (2013) 185-188, https://doi.org/10.14407/jrp.2013.38.4.185.
  21. R.A. Reyes, A. Romanyukha, C. Olsen, F. Trompier, L.A. Benevides, Electron paramagnetic resonance in irradiated fingernails: variability of dose dependence and possibilities of initial dose assessment, Radiat. Environ. Biophys. 48 (2009) 295-310, https://doi.org/10.1007/s00411-009-0232-1.
  22. S. Hirota, C.A.B. Gonzales, H. Yasuda, I. Yamaguchi, S. Toyoda, Electron spin resonance signal of human nails: increase after irradiation, J. Radioanal. Nucl. Chem. 328 (2021) 1369-1373, https://doi.org/10.1007/s10967-020-07540-8.
  23. International Organization for Standardization (ISO), Radiological Protection-Minimum Criteria for Electron Paramagnetic Resonance (EPR) Spectroscopy for Retrospective Dosimetry of Ionizing Radiation-Part 2: Ex Vivo Human Tooth Enamel Dosimetry, ISO 13304 2, 2020.
  24. P. Fattibene, et al., The 4th international comparison on EPR dosimetry with tooth enamel Part 1: Report, Radiat. Meas. 46 (2011) 765-771, https://doi.org/10.1016/j.radmeas.2011.05.001.
  25. E. Bernal, Limit of detection and limit of quantification determination in gas chromatography, Adv. Gas Chromato. (2014).
  26. A. Shrivastava, V. Gupta, Methods for the determination of limit of detection and limit of quantitation of the analytical methods, Chronicles Young Sci. 2 (2011) 21-25, https://doi.org/10.4103/2229-5186.79345.
  27. M. Nenoi (Ed.), Current Topics in Ionizing Radiation Research, IntechOpen, 2012, https://doi.org/10.5772/2027.
  28. International Commission on Radiological Protection (ICRP), Adult mesh-type reference computational phantoms, ICRP 145, 2020.
  29. B.R. Park, et al., The first KREDOS-EPR intercomparison exercise using alanine pellet dosimeter in South Korea, Nucl. Eng. Technol. 52 (2020) 2379-2386, https://doi.org/10.1016/j.net.2020.03.025.
  30. F. Trompier, A. Romanyukha, L. Kornak, C. Calas, B. LeBlanc, C. Mitchell, H. Swartz, I. Clairand, Electron paramagnetic resonance radiation dosimetry in fingernails, Radiat. Meas. 44 (2009) 6-10, https://doi.org/10.1016/j.radmeas.2008.10.005.
  31. A. Marciniak, B. Ciesielski, A. Prawdzik-Dampc, The effect of dose and water treatment on EPR signals in irradiated fingernails, Radiat. Protect. Dosim. 162 (2014) 6-9, https://doi.org/10.1093/rpd/ncu207.
  32. S. Sholom, S.W.S. McKeever, Emergency EPR dosimetry technique using vacuum-stored dry nails, Radiat. Meas. 88 (2016) 41-47, https://doi.org/10.1016/j.radmeas.2016.02.014.
  33. M. Sueki, G.A. Rinard, S.S. Eaton, G.R. Eaton, Impact of high-dielectric-loss materials on the microwave field in EPR experiments, J. Magn. Reson. A. 118 (1996) 173-188, https://doi.org/10.1006/jmra.1996.0025.
  34. International Organization for Standardization (ISO), Practice for Calibration of Routine Dosimetry Systems for Radiation Processing, 2013. ISO/ASTM51261.
  35. International Atomic Energy Agency (IAEA), Use of Electron Paramagnetic Resonance Dosimetry with Tooth Enamel for Retrospective Dose Assessment, vol. 1331, IAEA-TECDOC, 2002.