DOI QR코드

DOI QR Code

Simulation and assessment of 99mTc absorbed dose into internal organs from cardiac perfusion scan

  • Saghar Salari (Department of Medical Radiation Engineering, Parand Branch, Islamic Azad University) ;
  • Abdollah Khorshidi (Department of Medical Radiation Engineering, Parand Branch, Islamic Azad University) ;
  • Jamshid Soltani-Nabipour (Department of Medical Radiation Engineering, Parand Branch, Islamic Azad University)
  • Received : 2022.06.03
  • Accepted : 2022.08.22
  • Published : 2023.01.25

Abstract

Directly, it is not possible to measure the absorbed dose of radiopharmaceuticals in the organs of the human body. Therefore, simulation methods are utilized to estimate the dose in distinct organs. In this study, individual organs were separately considered as the source organ or target organ to calculate the mean absorption dose, which SAF and S factors were then calculated according to the target uptake via MIRD method. Here, 99mTc activity distribution within the target was analyzed using the definition and simulation of ideal organs by summing the fraction of cumulative activities of the heart as source organ. Thus, GATE code was utilized to simulate the Zubal humanoid phantom. To validate the outcomes in comparison to the similar results reported, the accumulation of activity in the main organs of the body was calculated at the moment of injection and cardiac rest condition after 60 min of injection. The results showed the highest dose absorbed into pancreas was about 21%, then gallbladder 18%, kidney 16%, spleen 15%, heart 8%, liver 8%, thyroid 7%, lungs 5% and brain 2%, respectively, after 1 h of injection. This distinct simulation model may also be used for different periods after injection and modifying the prescribed dose.

Keywords

References

  1. F.J.T. Wackers, D.S. Berman, J. Maddahi, D.D. Watson, G.A. Beller, H.W. Strauss, C.A. Boucher, M. Picard, B.L. Holman, R. Fridrich, et al., Technetium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety, and preliminary comparison to thallium-201 for myocardial perfusion imaging, J. Nucl. Med. 30 (1989) 301-311. 
  2. A. Boschi, L. Uccelli, L. Marvelli, C. Cittanti, M. Giganti, P. Martini, Technetium-99m radiopharmaceuticals for ideal myocardial perfusion imaging: lost and found opportunities, Molecules 27 (2022) 1188, https://doi.org/10.3390/molecules27041188. 
  3. H. Ma, S. Li, Z. Wu, J. Liu, H. Liu, X. Guo, Comparison of 99mTc-N-DBODC5 and 99mTc-MIBI of myocardial perfusion imaging for diagnosis of coronary artery disease, BioMed Res. Int. 2013 (2013) 1-10, https://doi.org/10.1155/2013/145427, 145427. 
  4. A. Khorshidi, Accelerator-based methods in radio-material 99Mo/99mTc production alternatives by Monte Carlo method: the scientific-expedient considerations in nuclear medicine, J. Multiscale Model. 11 (1) (2020), 1930001, https://doi.org/10.1142/S1756973719300016. 
  5. A. Khorshidi, Radiochemical parameters of molybdenum-99 transmutation in cyclotron-based production method using a neutron activator design for nuclear-medicine aims, Eur Phys J Plus 134 (2019) 249, https://doi.org/10.1140/epjp/i2019-12568-3. 
  6. A. Khorshidi, Neutron activator design for 99Mo production yield estimation via lead and water moderators in transmutation's analysis, Instrum. Exp. Tech. 61 (2) (2018) 198-204, https://doi.org/10.1134/s002044121802015x. 
  7. G.A. Shabani, F.H. Abbasi, M. Farahani, M. Godarzi, H.R. Khosrounejad, Formulation and quality control of single dose 99MTc-sestamibi as A myocardial perfusion imaging agent, Iranian J. Nucl. Med. 18 (1) (2010) 17. 
  8. A. Khorshidi, Assessment of SPECT images using UHRFB and other low-energy collimators in brain study by Hoffman phantom and manufactured defects, Eur. Phys. J. Plus 135 (2020) 261, https://doi.org/10.1140/epjp/s13360-020-00238-6. 
  9. A. Asgari, M. Ashoor, L. Sarkhosh, A. Khorshidi, P. Shokrani, Determination of gamma camera's calibration factors for quantitation of diagnostic radionuclides in simultaneous scattering and attenuation correction, Curr. Radiopharmaceut. 12 (1) (2019) 29-39, https://doi.org/10.2174/1874471011666180914095222. 
  10. J.S. Nabipour, A. Khorshidi, Spectroscopy and optimizing semiconductor detector data under X and γ photons using image processing technique, J. Med. Imag. Radiat. Sci. 49 (2) (2018) 194-200, https://doi.org/10.1016/j.jmir.2018.01.004. 
  11. A. Khorshidi, B. Khosrowpour, S.H. Hosseini, Determination of defect depth in industrial radiography imaging using MCNP code and SuperMC software, Nucl. Eng. Technol. 52 (7) (2020) 1597-1601, https://doi.org/10.1016/j.net.2019.12.010. 
  12. N. Banihashemi, J. Soltani-Nabipour, A. Khorshidi, H. Mohammadi, Quality control assessment of philips digital radiography and comparison with spellman and samsung systems in tehran oil ministry hospital, Eur. Phys. J. Plus 135 (2020) 269, https://doi.org/10.1140/epjp/s13360-020-00275-1. 
  13. M. Ashoor, A. Khorshidi, Point-spread-function enhancement via designing new configuration of collimator in nuclear medicine, Radiat. Phys. Chem. 190 (2022), 109783, https://doi.org/10.1016/j.radphyschem.2021.109783. 
  14. I.G. Zubal, C.R. Harrell, E.O. Smith, Z. Rattner, G. Gindi, P.B. Hoffer, Computerized three-dimensional segmented human anatomy, Med. Phys. 21 (1994) 299-302.  https://doi.org/10.1118/1.597290
  15. W.E. Bolch, K.F. Eckerman, G. Sgouros, S.R. Thomas, MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry-standardization of nomenclature, J Nucl Med 50 (3) (2009) 477-484, https://doi.org/10.2967/jnumed.108.056036. 
  16. M. Ashoor, A. Khorshidi, Assessment of absorbed dose in deformed breast tissue by Monte Carlo simulation, SN Appl. Sci. 2 (2020) 1317, https://doi.org/10.1007/s42452-020-3113-5. 
  17. M. Ashoor, A. Khorshidi, Evaluation of crystals' morphology on detection efficiency using modern classification criterion and Monte Carlo method in nuclear, Proc. of the Nat. Acad. Sci. India Section A - Phys. Sci. 89 (3) (2019) 579-585, https://doi.org/10.1007/s40010-018-0482-x. 
  18. A. Khorshidi, Molybdenum-99 production via lead and bismuth moderators and milli-structure-98Mo samples by the indirect production technique using the Monte Carlo method, Phys. Uspekhi 62 (9) (2019) 931-940, https://doi.org/10.3367/UFNr.2018.09.038441. 
  19. A. Khorshidi, Accelerator driven neutron source design via beryllium target and 208Pb moderator for boron neutron capture therapy in alternative treatment strategy by Monte Carlo method, J. Cancer Res. Therapeut. 13 (3) (2017) 456-465, https://doi.org/10.4103/0973-1482.179180. 
  20. C. Rossetti, G. Vanoli, G. Paganelli, M. Kwiatkowski, F. Zito, F. Colombo, C. Bonino, A. Carpinelli, R. Casati, K. Deutsch, M. Marmion, S.R. Woulfe, F. Lunghi, E. Deutsch, F. Ferruccio Fazio, Human biodistribution, dosimetry and clinical use of technetium(III)-99m-Q12, J. Nucl. Med. 35 (10) (1994) 1571-1580. 
  21. M. Ghaly, Y. Du, G.S.K. Fung, B.M.W. Tsui, J.M. Links, E. Frey, Design of a digital phantom population for myocardial perfusion SPECT imaging research, Physics in Medicine and Biology 59 (2014) 2935-2953, https://doi.org/10.1088/0031-9155/59/12/2935. 
  22. L. Volokh, C. Lahat, E. Binyamin, I. Blevis, Myocardial perfusion imaging with an ultra-fast cardiac SPECT camera - a phantom study, IEEE Nucl. Sci. Sympos. Conf. Record (2008) 4636-4639. 
  23. A. Khorshidi, M. Sadeghi, A. Pazirandeh, C. Tenreiro, Y. Kadi, Radioanalytical prediction of radiative capture in 99Mo production via transmutation adiabatic resonance crossing by cyclotron, J. Radioanal. Nucl. Chem. 299 (2014) 303-310, https://doi.org/10.1007/s10967-013-2749-7. 
  24. A. Khorshidi, M. Ahmadinejad, S.H. Hosseini, Evaluation of a proposed biodegradable 188Re source for brachytherapy application: a review of dosimetric parameters, Medicine 94 (28) (2015), e1098, https://doi.org/10.1097/md.0000000000001098. 
  25. M. Ashoor, A. Khorshidi, A. Pirouzi, A. Abdollahi, M. Mohsenzadeh, S.M.Z. Barzi, Estimation of Reynolds number on microvasculature capillary bed using diffusion and perfusion MRI: the theoretical and experimental investigations, Eur. Phys. J. Plus 136 (2021) 152, https://doi.org/10.1140/epjp/s13360-021-01145-0. 
  26. M. Ashoor, A. Khorshidi, L. Sarkhosh, Estimation of microvascular capillary physical parameters using MRI assuming a pseudo liquid drop as model of fluid exchange on the cellular level, Rep. Pract. Oncol. Radiother. 24 (1) (2019) 3-11, https://doi.org/10.1016/j.rpor.2018.09.007. 
  27. A. Boschi, L. Uccelli, P. Martini, A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging, Appl. Sci. 9 (2019) 2526, https://doi.org/10.3390/app9122526. 
  28. M. Spadafora, A. Cuocolo, R. Golia, M.L. de RiminI, G. Rosato, V. Rizzo, P. Sullo, L. Florimonte, L. Mansi, P. Miletto, Effect of trimetazidine on 99Tcm-tetrofosmin uptake in patients with coronary artery disease, Nucl. Med. Commun. 21 (2000) 49-54.  https://doi.org/10.1097/00006231-200001000-00009
  29. L.G. Bouchet, W.E. Bolch, H.P. Blanco, B.W. Wessels, J.A. Siegel, D.A. Rajon, I. Clairand, G. Sgouros, MIRD Pamphlet No 19: absorbed fractions and radionuclide S values for six age-dependent multiregion models of the kidney, J. Nucl. Med. 44 (7) (2003) 1113-1147. 
  30. M. Faraggi, I. Gardin, J.L. Stievenart, B.D. Bok, D. Le Guludec, Comparison of cellular and conventional dosimetry in assessing self-dose and cross-dose delivered to the cell nucleus by electron emissions of 99mTC, 123I, 111In, 67Ga and 201T1, Eur. J. Nucl. Med. 25 (3) (1998) 205-214, https://doi.org/10.1007/s002590050218. 
  31. A. Khorshidi, A. Rajaee, M. Ahmadinejad, M. Ghoranneviss, M. Ettelaee, Low energy electron generator design and depth dose prediction for micro-superficies tumors treatment purposes, Physica Scripta 89 (2014), 095001, https://doi.org/10.1088/0031-8949/89/9/095001. 
  32. H. Imani-Shirvanehdeh, A. Khorshidi, J. Soltani-Nabipour, A. Alipour, K. Arbabi, Design and construction of a cylindrical ionization chamber for reference dosimetry in radiation protection, Iran J. Sci. Technol. Trans. Sci. 45 (2021) 1837-1841, https://doi.org/10.1007/s40995-021-01153-w. 
  33. A. Khorshidi, Gold nanoparticles production using reactor and cyclotron based methods in assessment of 196,198Au production yields by 197Au neutron absorption for therapeutic purposes, Mater. Sci. Eng. C 68 (2016) 449-454, https://doi.org/10.1016/j.msec.2016.06.018.