DOI QR코드

DOI QR Code

Electrical characteristics and deep-level transient spectroscopy of a fast-neutron-irradiated 4H-SiC Schottky barrier diode

  • Received : 2022.07.20
  • Accepted : 2022.08.21
  • Published : 2023.01.25

Abstract

The dependence of the electrical characteristics on the fast neutron fluence of an epitaxial 4H-SiC Schottky barrier diode (SBD) was investigated. The 30 MeV cyclotron was used for fast neutron irradiation. The neutron fluences evaluated through Monte Carlo simulation were in the 2.7 × 1011 to 1.45 × 1013 neutrons/cm2 range. Current-voltage and capacitance-voltage measurements were performed to characterize the samples by extracting the parameters of the irradiated SBDs. Neutron-induced defects in the epitaxial layer were identified and quantified using a deep-level transient spectroscopy measurement system developed at the Korea Atomic Energy Research Institute. As the neutron fluence increased from 2.7 × 1011 to 1.45 × 1013 neutrons/cm2, the concentration of the Z1/2 defects increased by approximately 20 times. The maximum defect concentration was estimated as 1.5 × 1014 cm-3 at a neutron fluence of 1.45 × 1013 neutrons/cm2.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government(MSIT) (NRF-2017M2A2A6A05018527).

References

  1. C. Hemmingsson, N.T. Son, O. Kordina, J.P. Bergman, E. Janzen, J.L. Lindstrom, S. Savage, N. Nordell, Deep level defects in electron-irradiated 4H SiC epitaxial layers, J. Appl. Phys. 81 (9) (1997) 6155-6159.  https://doi.org/10.1063/1.364397
  2. T. Kimoto, J.A. Cooper, Fundamentals of Silicon Carbide Technology, John Wiley & Sons Singapore Pte. Ltd., 2014, pp. 103-250. 
  3. Ha Ni Baek, Gwang Min Sun, Ji suck Kim, Sy Minh Tuan Hoang, Mi Eun Jin, Sung Ho Ahn, Improvement of Switching Speed of a 600-V Nonpunch-Through Insulated Gate Bipolar Transistor Using Fast Neutron Irradiation, Nucl. Eng. Technol. 49 (2017) 209-215.  https://doi.org/10.1016/j.net.2016.08.016
  4. Hani Baek, Gihyun Kwon, Jongsuk Nam, Sangeun Kim, Hyoungtaek Kim, Byung-Gun Park, Jungil Lee, Minyong Kang, Gwang Min Sun, Chansun Shin, Microwave photoconductance decay measurements of n- and p-type silicon irradiated with neutrons and protons, Radiat. Phys. Chem. 185 (2021), 109501. 
  5. T. Dalibor, G. Pensl, H. Matsunami, T. Kimoto, W.J. Choyke, A. Schoner, N. Nordell, Deep defect centers in silicon carbide monitored with deep level transient spectroscopy, Phys. Status Solidi 162 (1997) 199-225 (a).  https://doi.org/10.1002/1521-396X(199707)162:1<199::AID-PSSA199>3.0.CO;2-0
  6. K. Danno, T. Kimoto, H. Matsunami, Midgap levels in both n- and p-type 4H-SiC epilayers investigated by deep level transient spectroscopy, Appl. Phys. Lett. 86 (2005), 122104. 
  7. A. Castaldini, A. Cavallini, L. Rigutti, F. Nava, S. Ferrero, F. Giorgis, Deep levels by proton and electron irradiation in 4H-SiC, J. Appl. Phys. 98 (2005), 053706. 
  8. G. Alfieri, E.V. Monakhov, B.G. Svensson, M.K. Linnarsson, Annealing behavior between room temperature and 2000℃ of deep level defects in electron-irradiated n-type 4H silicon carbide, J. Appl. Phys. 98 (2005), 043518. 
  9. N.T. Son, X.T. Trinh, L.S. Lovlie, B.G. Svensson, K. Kawahara, J. Suda, T. Kimoto, T. Umeda, J. Isoya, T. Makino, T. Ohshima, E. Janzen, Negative-U system of carbon vacancy in 4H-SiC, Phys. Rev. Lett. 109 (2012), 187603. 
  10. K. Kawahara, X. Thang Trinh, N. Tien Son, E. Janzen, J. Suda, T. Kimoto, Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance, Appl. Phys. Lett. 102 (2013), 112106. 
  11. L. Gelczuk, M. Dabrowska-Szata, M. Sochacki, J. Szmidt, Characterization of deep electron traps in 4H-SiC junction barrier Schottky rectifiers, Solid State Electron. 94 (2014) 56-60.  https://doi.org/10.1016/j.sse.2014.02.008
  12. Z. Pastuovic, R. Siegele, I. Capan, T. Brodar, S. Sato, T. Ohshima, Deep level defects in 4H-SiC introduced by ion implantation: the role of single ion regime, J. Phys. Condens. Matter 29 (2017), 475701. 
  13. H. Heissenstein, C. Pepperuller, R. Helbig, Nuclear transmutation doping of 6H-silicon carbide with phosphorous, Diam. Relat. Mater. 6 (1997) 1440-1444.  https://doi.org/10.1016/S0925-9635(97)00072-1
  14. TYSiC Homepage. http://www.sicty.com. 
  15. J.W. Shin, S.I. Bak, C.M. Ham, E.J. In, D.Y. Kim, K.J. Min, Y. Zhou, T.S. Park, S.W. Hong, V.N. Bhoraskar, Neutron spectra produced by 30, 35 and 40 MeV proton beams at KIRAMS MC-50 cyclotron with a thick beryllium target, Nucl. Instrum. Methods Phys. Res. 797 (2015) 304-310.  https://doi.org/10.1016/j.nima.2015.06.042
  16. D.B. Pelowitz (Ed.), MCNP6 USER'S MANUAL Version 1.0 Manual rev.0, Los Alamos Nat, Lab., Los Alamos, NM, USA, 2013. Tech. Rep. LACP13-00634. 
  17. M.B. Chadwick, M. Herman, P. Oblozinsky, M.E. Dunn, Y. Danon, A.C. Kahler, D.L. Smith, B. Pritychenko, G. Arbanas, R. Arcilla, R. Brewer, D.A. Brown, R. Capote, A.D. Carlson, Y.S. Cho, H. Derrien, K. Guber, G.M. Hale, S. Hoblit, S. Holloway, T.D. Johnson, T. Kawano, B.C. Kiedrowski, H. Kim, S. Kunieda, N.M. Larson, L. Leal, J.P. Lestone, R.C. Little, E.A. McCutchan, R.E. MacFarlane, M. MacInnes, C.M. Mattoon, R.D. McKnight, S.F. Mughabghab, G.P.A. Nobre, G. Palmiotti, A. Palumbo, M.T. Pigni, V.G. Pronyaev, R.O. Sayer, A.A. Sonzogni, N.C. Summers, P. Talou, I.J. Thompson, A. Trkov, R.L. Vogt, S.C. van der Marck, A. Wallner, M.C. White, D. Wiarda, P.G. Young, ENDF/B-VII. 1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data, Nucl. Data Sheets 112 (12) (2011) 2887-2996.  https://doi.org/10.1016/j.nds.2011.11.002
  18. D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors, J. Appl. Phys. 45 (1974) 3023-3032.  https://doi.org/10.1063/1.1663719
  19. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2007, pp. 46-67. 
  20. A. Itoh, T. Kimoto, H. Matsunami, High performance of high-voltage 4H-Sic Schottky barrier diodes, IEEE Electron. Device Lett. 16 (6) (1995) 280-282.  https://doi.org/10.1109/55.790735
  21. L. Patrick, W.J. Choyke, Static dielectric constant of SiC, Phys. Rev. B 2 (6) (1970) 2255-2256.  https://doi.org/10.1103/PhysRevB.2.2255
  22. L. Storasta, J.P. Bergman, E. Janzen, A. Henry, J. Lu, Deep levels created by low energy electron irradiation in 4H-SiC, J. Appl. Phys. 96 (9) (2004) 4909-4915.  https://doi.org/10.1063/1.1778819
  23. K. Danno, T. Kimoto, Investigation of deep levels in n-type 4H-SiC epilayers irradiated with low-energy electrons, J. Appl. Phys. 100 (2006), 113728.