DOI QR코드

DOI QR Code

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari (Department of Nuclear Engineering, School of Mechanical Eng. Shiraz University) ;
  • Ataollah Rabiee (Department of Nuclear Engineering, School of Mechanical Eng. Shiraz University) ;
  • Farshad Faghihi (Radiation Research Center, Shiraz University)
  • Received : 2022.03.27
  • Accepted : 2022.09.03
  • Published : 2023.01.25

Abstract

The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

Keywords

References

  1. Y. Maruyama, Y. Kojima, M. Tahara, H. Nagasaka, M. Kato, A.A. Kolodeshnikov, V.S. Zhdanov, Y.S. Vassiliev, A study on concrete degradation during molten core/concrete interactions, Nucl. Eng. Des. 236 (2006) 2237-2244. https://doi.org/10.1016/j.nucengdes.2006.03.055
  2. H.L. Lee, J.L. Cho, E.S. Yoon, M. Cho, D.G. Kim, Assessment of mass fraction and melting temperature for the application of limestone concrete and siliceous concrete to nuclear reactor basement considering molten core-concrete interaction, Nuc. Eng. Tec. (2016) 448-456.
  3. T. Huong Vo, J.H. Song, An analysis of containment responses during a station blackout accident, J. Nucl. Sci. Technol. 54 (10) (2017) 1074-1084. https://doi.org/10.1080/00223131.2017.1344584
  4. B.D. Boeck, Prevention and mitigation measures to ensure containment integrity, Nucl. Eng. Des. 209 (2001) 147-154. https://doi.org/10.1016/S0029-5493(01)00397-1
  5. N. Muellner, W. Giannotti, F. D'Auria, Investigation of H2 generation during a SBO for a VVER 1000/v320 using the codes RELAP5-SCDAP and MELCOR, in: 5th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik, Croatia, May 16-20, 2004.
  6. K.O. Noori, M. Rahgoshay, A. Minuchehr, A.S. Shirani, Analysis of thermalehydraulic parameters of WWER-1000 containment in a large break LOCA, Ann. Nuc. Energy 68 (2014) 101-111. https://doi.org/10.1016/j.anucene.2014.01.009
  7. M. Dehjourian, R. Sayareh, M. Rahgoshay, G. Jahanfarnia, A.S. Shirani, Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor, Nucl. Eng. Technol. 48 (5) (2016) 1174-1183. https://doi.org/10.1016/j.net.2016.04.002
  8. R. Gharari, H. Kazeminejad, N. Mataji Kojouri, A. Hedayat, M. Hassan Vand, M. Nasiri Akbar Abadi, O. Safarzadeh, Study the effects of various parameters on hydrogen production in the WWER1000/V446, Prog. Nucl. Energy 124 (2020) 103-370. https://doi.org/10.1016/j.pnucene.2020.103370
  9. M. Salehi, Gh. Jahanfarnia, Investigation of LB-LOCA in VVER-1000 NPP using RELAP5/SCDAP and CONTAIN codes, Ann. Nucl. Energy 139 (2020), 107229.
  10. B. Lin, S.Z. Qiu, G.H. Su, W.X. Tian, Y.P. Zhang, Development and verification of molten corium concrete interaction code, Prog. Nucl. Energy 85 (2015) 701-706. https://doi.org/10.1016/j.pnucene.2015.07.003
  11. P. Chai, M. Kondo, N. Erkan, K. Okamoto, Numerical simulation of MCCI based on MPS method with different types of concrete, Ann. Nucl. Energy 103 (2017) 227-237. https://doi.org/10.1016/j.anucene.2017.01.009
  12. S.V. Svetlov, V.V. Bezlepkin, V.S. Granovsky, V.B. Proklov, A.B. Nedorezov, V.V. Gusarov, I.V. Kuhtevich, S.V. Bechta, V.G. Asmolov, A.S. Sidorov, H.M. Chuan, V.F. Strizhov, Yu.P. Udalov, Core-catcher for tianwan NPP with VVER-1000 reactor, in: Concept, Design and Justification. 11th Int. Conference on Nucl. Eng. Tokyo, Japan, 2003.
  13. Yu.A. Zvonarev, D.F. Tsurikov, V.L. Kobzar, A.M. Volchek, N.P. Kiselev, V.F. Strizhov, A.S. Filippov, E.V. Moiseenko, Numerical Analysis of core-catcher efficiency for VVER-1200, Phys. At. Nuclei 74 (2011) 1845-1853. https://doi.org/10.1134/S1063778811130084
  14. A.A. Sulatsky, S.V. Bechta, V.S. Granovsky, V.B. Khabensky, E.V. Krushinov, S.A. Vitol, V.V. Gusarov, V.I. Almjashev, P.V. Bezlepkin, Molten corium interaction with oxidic sacrificial material of VVER core-catcher, in: Proceedings of ICAPP '05 Seoul, Korea, Paper 5240, 2005.
  15. V.B. Khabensky, V.S. Granovsky, S.V. Bechta, V.V. Gusarov, The severe accident management concept of the VVER-1000 and the justification of corium retention in a Crucible-Type core-catcher, Nucl. Eng. Tec. 41 (5) (2009).
  16. M. Fischer, A. Henning, R. Surmann, Mitigation of severe accidents in AREVA's Gen 3+ nuclear power plants, Nucl. Eng. Des. 269 (2014) 323-329. https://doi.org/10.1016/j.nucengdes.2013.08.047
  17. Y. Zvonarev, Y. Semchenkov, The Strategy of Melt Localization for VVER Reactors under Severe Accidents, The 9TH European Review Meeting on Severe Accident Research, 2019. ERMSAR2019).
  18. Atomic Energy Organization of Iran (AEOI), Final Safety Analysis Report (FSAR) for Bushehr VVER-1000 Reactor. Tehran, Iran, 2003 (Chapter 6).
  19. R.O. Gauntt, J.E. Cash, R.K. Cole, C.M. Erickson, L.L. Humphries, S.B. Rodriguez, M.F. Young, MELCOR computer code manuals, Primer and Users' Guide 1 (2005) 6, Version 1.8.
  20. Atomic Energy Organization of Iran (AEOI), Final Safety Analysis Report (FSAR) for Bushehr VVER-1000 Reactor. Tehran, Ira, 2005.
  21. W. Ma, Y. Yuan, B.R. Sehgal, In-vessel melt retention of pressurized water reactors: historical review and future research needs, Engineering 2 (2016) 103-111. https://doi.org/10.1016/J.ENG.2016.01.019
  22. F. Salari, A. Rabiee, F. Faghihi, Investigation of ex-vessel core-catcher for SBO accident in VVER-1000/V528 containment using MELCOR code, NUCL. SCI. TECH. 32 (2021) 43.